Bürogemeinschaft Kowalski - Dr. Preuß Altlasten und Hydrologie

Oliver Kowalski Dr. Ernst Preuß Sachverständiger für Altlasten (§ 18 BBodSchG, § 36 GewO)

Büro Lübeck Dipl.-Ing. Oliver Kowalski

23562 Lübeck Lise-Meitner-Weg 32a Tel.: 0451 - 5853946 kowalski@kowalski-drpreuss.de

Büro Kiel Dr. Ernst Preuß

24148 Kiel

Wischhofstraße 24 Tel.: 0431 - 2392347 drpreuss@kowalski-drpreuss.de

Büro Hamburg Dipl.-Geogr. Gerd Harnisch

21073 Hamburg Bremer Straße 48 Tel.: 040 - 4664 4585 harnisch@kowalski-drpreuss.de

Orientierende Altlastenerkundung (Phase 2a)

in Norderstedt Stonsdorf, Stormarnstraße

34-36

Auftraggeber Stadt Norderstedt

Amt für Stadtentwicklung, Umwelt und Verkehr

Rathausallee 50 22846 Norderstedt

Auftragnehmer Bürogemeinschaft Kowalski - Dr. Preuß

Projektbearbeiter: Dipl.-Ing. Oliver Kowalski

Projektnummer K1607

Exemplarnummer 1/3

Titel

Ort, Datum Lübeck, den 23.11.2016

Oliver Kowalski

ınnaıt 1 Veranlassu	ng4	1
2 Standortge	gebenheiten	1
2.1 Sta	andort	1
2.2 Un	tersuchungskonzeption	5
3 Durchführu	ng der Untersuchungen	3
3.1 Sta	andorterkundung6	3
3.2 An	alytik	7
4 Ergebnisse	der Erkundungen	7
4.1 Ge	ologie / Bodenaufbau	7
4.2 Gr	undwasserverhältnisse	3
4.3 An	alysenergebnisse	3
5 Bewertung)
5.1 Wi	rkungspfad Boden - Mensch)
5.2 Wi	rkungspfad Boden - Grundwasser	10
6 Zusammen	fassung und Empfehlung	11
Tabelle 2: Unt	ntaminationsverdachtsflächen inkl. Untersuchungsumfang	
<u>Anlagenverze</u>	<u>eichnis</u>	
Anlage 1 Anlage 2 Anlage 3 Anlage 4	Übersichtsplan Lageplan der Bohrpunkte Tabellarische Zusammenstellung der Analyseergebnisse Boden Tabellarische Zusammenstellung der Analyseergebnisse Bodenluft	
<u>Anhangverze</u>	<u>ichnis</u>	
Anhang A1 Anhang A2 Anhang A3 Anhang A4 Anhang A5 Anhang A6 Anhang A7 Anhang A8	Bodenprofile Kleinrammbohrungen Schichtenverzeichnisse Kleinrammbohrungen Nivellement Bodenluft-Probenahmeprotokolle Oberboden-Probenahmeprotokoll Prüfbericht Boden Prüfbericht Bodenluft Fotodokumentation	

Abkürzungsverzeichnis

BBodSchV Bundesbodenschutzverordnung

BG Bestimmungsgrenze

BTEX Summe Benzol, Toluol, Xylole, Ethylbenzol

EPA US-amerikanische Umweltbehörde

GOK Geländeoberkante
GWL Grundwasserleiter
HE Historische Erkundung
RKS Kleinrammbohrung

KVF Kontaminationsverdachtsfläche KW Kohlenwasserstoff(-Index)

LAGA Länderarbeitsgemeinschaft Abfall

LCKW Leichtflüchtige Chlorkohlenwasserstoffe

LLUR Landesamt für Landwirtschaft, Umwelt und ländliche Räume S.-H.

MSW Maßnahmenschwellenwert (der LAWA)

PAK Polyzyklische, aromatische Kohlenwasserstoffe

PCB Polychlorierte Biphenyle

PFC Per- und polyfluorierte Chemikalien

PFOS Perfluoroktansulfonsäure

PFOA Perfluoroktansäure
PFPeA Perfluorpentansäure
PFT Perfluorierte Tenside

PW Prüfwerte SM Schwermetalle

UEG Untere Explosionsgrenze

1 Veranlassung

Eine historische Erkundung der Altstandortverdachtsfläche Stormarnstraße 34-36 in Norderstedt hat Kontaminationsverdachtsflächen ergeben, die sich aus der früheren Nutzung durch eine Druckerei ergeben haben. Derzeit wird das Grundstück durch das städtische Gebrauchtwarenhaus Hempels genutzt.

Die Bürogemeinschaft Kowalski - Dr. Preuß wurde mit Vertrag vom 20./24.06.2016 durch die Stadt Norderstedt, Amt für Stadtentwicklung, Wirtschaft und Verkehr beauftragt, für das Grundstück Stormarnstraße 34-36 in Norderstedt eine orientierende Altlastenerkundung und Gefährdungsabschätzung (Phase 2a) durchzuführen.

Es wurden folgende Dokumente für die Bearbeitung verwendet:

Gesetze/Regelwerke

- [1] Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 12.07.1999 (Fassung vom 31.08.2015).
- [2] Novelle der Bundes-Bodenschutz- und Altlastenverordnung, 3. Entwurf v. 23.07.2015.
- [3] "Untersuchung und Beurteilung des Wirkungspfades Boden Grundwasser Sickerwasserprognose", Handbuch Altlasten Band 3/Teil 3, HLUG, 2003
- [4] "Arbeitshilfe Sickerwasserprognose bei orientierenden Untersuchungen", LABO, Altlastenausschuss (ALA) Unterausschuss Sickerwasserprognose, 07/2003
- [5] Leitlinien zur vorläufigen Bewertung von PFC-Verunreinigungen in Wasser und Böden, 01/2015, BLU, Bayern
- [6] "Bewertungsgrundlagen für Schadstoffe in Altlasten Informationsblatt für den Vollzug", LABO, Altlastenausschuss (ALA), 09/2008

Dokumente

- [7] Historische Erkundung vom 30.06.2015, Dipl.-Geol. Ellen Berling
- [8] Protokoll einer Vorbesprechung vom 07.07.2016, Stadt Norderstedt
- [9] Überprüfung auf Kriegsaltlasten vom 10.09.2015, Schreiben vom 14.04.2016, Kampfmittelräumdienst S.H.
- [10] Geodaten der Stadt Norderstedt vom 29.06.2016, Luftbildabgleich vom 03.09.2016, Stadt Norderstedt
- [11] Bodenprofile/Schichtenverzeichnisse und Bodenluftentnahmen vom 19./20.10.2016; ASBT Umwelt GmbH & Co. KG, Lübeck
- [12] Laborprüfberichte vom 28.10./17.11./22.11.2016; Eurofins Umwelt Nord GmbH, Schwerin

2 Standortgegebenheiten

2.1 Standort

Die katasteramtlichen Angaben des Grundstücks lauten:

Gemarkung Glashütte

- Flur 1
- Flurstück 41 (Größe: 4.289 m²)

Das Grundstück Stormarnstraße 34-36 im Gewerbegebiet Stonsdorf wird seit 2012 durch das städtische Gebrauchtwarenhaus Hempels genutzt, das die vorhandenen, nicht unterkellerten Hallen nutzt.

Das Grundstück ist relativ eben mit einer Höhenlage zwischen NN+37,9 m und +38,4 m.

Nach den Ergebnissen der Historische Erkundung vom 30.06.2015 [7] wurden aufgrund des langjährigen Betriebs einer Druckerei im Zeitraum 1965 - 2009 folgende Kontaminationsverdachtsflächen festgestellt, die im Rahmen einer orientierenden Erkundung nach § 3 (3) BBodSchV wie folgt zu untersuchen sind:

Tabelle 1: Kontaminationsverdachtsflächen inkl. Untersuchungsumfang gem. HE [7]

KVF	Branche	Bohr- ungen	Analytik Boden	Analytik Eluat	Analytik Bodenluft
KVF 1	Druckerei	7 RKS	SM, KW, PAK	PFOS	LCKW, BTEX
KVF 2	Repro-Abtlg. inkl. Tanks	1 RKS	SM (Ag), PAK	SM, SO4, NH4, PFT	LCKW
KVF 3	Trafo	1 RKS	SM, PAK, PCB	PFOS	-
KVF 4	Heizöltank	1 RKS	KW, PAK	PFOS	-

Die Begründung für die PFT-Untersuchungen ergibt sich aus einem Großbrandereignis im Jahr 1986 in der nördlichen Hälfte der Hallen.

2.2 Untersuchungskonzeption

Die Untersuchungsempfehlung aus [7] wurde im Rahmen eines Ortstermins mit der Stadt Norderstedt, der UBB des Kreises Segeberg und dem Mieter wie folgt modifiziert und abgestimmt [8]:

Tabelle 2: Untersuchungsprogramm Orientierende Untersuchung

KVF	Branche	Bohrungen	Analytik Boden	Analytik Eluat	Analytik Bodenluft
KVF 1	Druckerei	RKS 1-6, Tiefe 4-7 m	SM, KW, PAK	PFT	LCKW, BTEX
KVF 2	Repro-Abtlg. inkl. Tanks	RKS 8, Tiefe 5 m	SM, Ag, PAK	SM, SO4, NH4, PFT	LCKW
KVF 3	Trafo	RKS 9, Tiefe 4 m	SM, PAK, PCB	PFT	-
KVF 4	Heizöltank	RKS 10, Tiefe 5 m	KW, PAK	PFT	-
-	SW-Leitung	RKS 7, Tiefe 7 m	SM, KW, PAK	PFT	LCKW, BTEX
-	(Löschwasserschaden)	OB1, Tiefe 0,4 m	SM, KW, PAK, PCB	PFT	-

Weitere Festlegungen:

- 1. Schwermetalle KVO zzgl. As, Sb, Co, Se, Sn;
- 2. 10 PFT nach Liste Leitfaden Bayern 2015 [5];
- 3. Eluat: PFT im Säuleneluat 2:1 nach DIN 19528; da gemäß Bayern-Leitfaden [5] noch das Elutionsverfahren nach DIN 38414-S4 (10:1) empfohlen wird, wurde dies bei den Proben mit Minderbefunden parallel durchgeführt; Parameterumfang gem. Empfehlung des LLUR vom 29.06.2016 (Schreiben UBB Kreis SE vom 30.06.2016);
- 4. Analytik der Proben mit PFT-Verdacht aus Schicht unterhalb der Oberflächenversiegelung:
- 5. OB1 aus 4 Einzelproben im Zufahrtsbereich Anlieferung;
- 6. Es wird generell vorgeschachtet.

3 Durchführung der Untersuchungen

3.1 Standorterkundung

Vor der Standorterkundung wurde die Leitungsfreiheit aller Bohransatzpunkte auf der Grundlage der Netzpläne aller Ver-/Entsorgungseinrichtungen [7] überprüft. Zusätzlich erfolgte eine Handvorschachtung der Bohrpunkte bis 1,2 m Tiefe.

Bzgl. der Kampfmittelfreiheit liegt der Bescheid des LKA Kampfmittelräumdienstes S.H. vom 10.09.2015/14.04.2016 vor, nachdem das Grundstück nicht als Kampfmittelverdachtsfläche eingestuft wird.

Zur Einhaltung des Arbeitsschutzes wurde eine Arbeitsschutzanweisung vom 17.10.2016 erstellt und die Mitarbeiter am 19.10.2016 eingewiesen.

Zur Überprüfung der Altlastverdachtsorte wurden insgesamt 10 Kleinrammbohrungen abgeteuft. Die Bohrungen wurden am 19./20.10.2016 durch die Fa. ASBT Umwelt GmbH & Co. KG, Lübeck durchgeführt und durch die Bürogemeinschaft Kowalski - Dr. Preuß fach- und sicherheitstechnisch begleitet. Die Arbeitszeiten wurden in Abstimmung mit der Betriebsleitung des Fachbereichs Gebrauchtwarenhaus abgestimmt und mussten für die Bohrarbeiten in der Halle in die Abendstunden verlegt werden.

Die Lage der Kleinrammbohrungen wurde mit dem Auftraggeber und der Betriebsleitung festgelegt und ist dem Lageplan der Anlage 2 zu entnehmen. Die Ansatzpunkte sind zudem der Fotodokumentation im Anhang A8 zu entnehmen. Die Lageeinmessung erfolgte durch die Bürogemeinschaft Kowalski - Dr. Preuß auf das Gebäude, die Höhen wurden mittels Nivellement aufgenommen und auf eine Sieldeckelhöhe in der Straße bezogen (s. Anhang A3). Die Bodenprofile der KRB sind im Anhang A1/A2 dokumentiert.

Im Bereich der RKS1 und RKS9 gab es Bohrhindernisse in 0,7 m Tiefe, sodass die Bohrung jeweils versetzt werden musste.

Für die Entnahme der Bodenluftproben wurden die Bohrungen zu temporären Bodenluftmessstellen ausgebaut. Das Bohrloch wurde mit einem Packer vor der Beprobung abgedichtet. Ein mehrfacher Austausch des Bohrlochvolumens (Totvolumen) vor der Probenahme wurde gewährleistet. Vor der Probenahme wurden die Feld-Parameter O₂ (Vol.-%), CO₂

(Vol.-%), CH_4 (% UEG, Vol.-%), CO (ppm) und H_2S (ppm) gemessen. Die Bodenluftproben zur Laboranalyse wurden gemäß der VDI Richtlinie 3865, Blatt 2 gewonnen (Aktivkohlebefüllung). Die Einzelheiten der Probenahme sind den Probenahmeprotokollen im Anhang A4 zu entnehmen.

Im Bereich der nordwestlichen Warenanlieferung wurde unterhalb des Verbundpflasters eine Oberbodenmischprobe unterhalb des Pflastersandes aus insgesamt 4 Einzelproben entnommen. Die Probenahme ist im Probenahmeprotokoll im Anhang A5 zu dokumentiert.

Die Boden- und Bodenluftproben wurden mit Projektbezeichnung, Probennummer, Entnahmetiefe und Entnahmezeitpunkt eindeutig beschriftet, kühl gelagert und am folgenden Tag dem Labor Eurofins Umwelt Nord GmbH, Schwerin, zur chemischen Analyse zugeführt.

3.2 Analytik

Die Analytik wurde durch das akkreditierte Labor Eurofins Umwelt Nord GmbH, Schwerin durchgeführt.

Die Analyseverfahren und Bestimmungsgrenzen sind den Laborprüfberichten in den Anhängen A4 zu entnehmen.

4 Ergebnisse der Erkundungen

4.1 Geologie / Bodenaufbau

Regionalgeologie

Gemäß historischer Erfassung [7] steht folgende Regionalgeologie an.

An der Oberfläche im Bereich des Untersuchungsgebietes sind anthropogen überprägte Sedimente vorhanden, die hautsächlich aus der Nutzung der Fläche als Truppenübungsplatz der SS (1936 bis 1945), der nachfolgenden Bombardierung und Planierung sowie der gewerblichen Nutzung seit dem Ende der 1950er Jahre resultieren. Diese aufgefüllten sandigen Bereiche wurden in Mächtigkeiten von bis zu 3 m festgestellt.

Im Untersuchungsgebiet stehen oberflächennah pleistozäne Sande der Saalevereisung in einer Mächtigkeit von ca. 10 bis 12 m an, die den ersten Grundwasserleiter bilden. Die Basis dieses Grundwasserleiters liegt bei ca. NN+25 m, der Grundwasserflurabstand beträgt ca. 5 bis 7 m. Diese Sande und Kiese wurden von 1926 bis 1988 nördlich des heutigen Gewerbegebietes in großem Umfang abgebaut.

In den Hohlformen und Rinnen der saalezeitlichen Landoberfläche wurden bereichsweise jüngere Sedimente abgelagert. So sind in der Umgebung des Gewerbegebietes Torfe und Moore zu finden.

Das Liegende des ersten Grundwasserleiters wird von einem ca. 15 bis 20 m mächtigen Geschiebemergel gebildet, der die Abdeckung des zweiten Grundwasserleiters darstellt. Aus diesem Grundwasserleiter, der ebenfalls als saalezeitlichen glazifluviatilen Sanden und Kiesen besteht und dessen Basis bei ca. NN-5 bis -10 m liegt, wird das Grundwasser der Stadt Norderstedt gewonnen. Das Untersuchungsgebiet befindet sich im Bereich der Schutzzone

III des Wasserschutzgebietes Norderstedt. Aufgrund von Erosionsrinnen ist der obere Geschiebemergel südöstlich des Untersuchungsgebietes bereichsweise geringmächtig bzw. vollständig ausgeräumt, so dass ein hydraulischer Kontakt zwischen dem oberen und dem unteren Grundwasserleiter vorhanden ist. Die Fließrichtung der beiden oberen Grundwasserleiter weist in südliche bzw. südwestliche Richtung.

Bodenaufbau

Für den oberflächennahen Bodenaufbau des Grundstücks liegen durch die Kleinrammbohrungen RKS 1-10 folgende Erkenntnisse vor (s. Anhang A1).

Unter den Oberflächenbefestigungen stehen aufgefüllte Sande von 0,4 m - 2,7 m Mächtigkeit an. Diese Sandauffüllungen enthalten geringfügige Reste an Glas, Beton- und Ziegelbruch sowie minimale humose Anteile.

Unterhalb der Auffüllungen stehen einheitliche Sande bis Bohrendteufe in 7 m an. Es handelt sich um Mittelsande, im nordöstlichen Grundstücksbereich tlw. auch Feinsande. Die Sande werden in der Tiefe geringfügig gröber.

4.2 Grundwasserverhältnisse

In den offenen Bohrlöchern konnte in den tieferen Bohrungen folgende Grundwasserspiegel eingemessen werden:

RKS2: 6,80 m entspr. NN+31,6 m
 RKS7: 6,20 m entspr. NN+31,8 m

Nach einem Isohypsenplan des 1. GWL der Stadt Norderstedt von 04/2016 ist in der Stormarnstraße eine Druckhöhe von NN+32 m und eine südliche Fließrichtung zu erwarten.

Auch frühere Bohrprofile [7] haben Flurabstände zwischen 6 und 7 m Tief ergeben.

4.3 Analysenergebnisse

Die Ergebnisse der **Bodenanalysen** liegen als Prüfbericht dem Anhang A6 bei und sind in der Anlage 3 zusammengefasst. Es wurden folgende Befunde in der Festsubstanz festgestellt.

Die KW-Gehalte liegen in allen Proben unterhalb der Bestimmungsgrenze (BG).

Die PAK-Gehalte liegen in allen Proben unterhalb der BG.

Die PCB-Gehalte liegen in beiden Proben RKS9 und OB1 unterhalb der BG.

Die Schwermetallgehalte Sb, Co, Se, Sn sowie As liegen in allen Proben unterhalb bzw. im Bereich der jeweiligen BG. Auch der Ag-Gehalt in der RKS8/4 liegt unterhalb der BG.

Im Eluat wurden PFT in einigen Proben im Spurenbereich nachgewiesen:

Tabelle 3: Analysenergebnisse PFT im Bodeneluat

Probe	RKS1/1	RKS2/1	RKS5/1	RKS6/2	OB1	PW*	Dim
Tiefe	0,2-0,4	0,2-0,4	0,2-0,4	1,0-2,0	0,2-0,4		m
KVF	KVF1	KVF1	KVF1	KVF1			
Eluat 2:1							
PFOS+PFOA	0,16	0,11	<0,03	0,19	0,02	-	μg/l
∑ PFT (10)	0,75	0,17	0,01	0,19	0,05	-	μg/l
Eluat 10:1							
PFOS+PFOA	0,032	0,015	<0,03	0,038	<0,03	0,3/1	μg/l
∑ PFT (10)	0,149	0,026	<0,1	0,038	<0,1	-	μg/l

^{*}Prüfwerte Stufe 1/2 nach [5]

In den übrigen 6 Bodenproben wurden keine PFT nachgewiesen.

Es ist zu erkennen, dass im 10:1 Eluatansatz nur ca. 20% der Befunde gegenüber dem 2:1 Eluatansatz zu finden sind.

Die Eluatgehalte an Salzen und Schwermetallen in der RKS8/4 hat ausschließlich Negativbefunde ergeben.

Die Ergebnisse der **Bodenluftanalysen** liegen als Prüfbericht dem Anhang A7 bei und sind in der Anlage 4 zusammengefasst. Es wurden folgende Befunde in der Festsubstanz festgestellt.

Die BTEX-Gehalte liegen in 7 untersuchten Bodenluftproben im Bereich der BG, in der RKS1/BL maximal 0,43 mg/m³. Von den analysierten BTEX hat Toluol die höheren Befunde verursacht.

Die LCKW-Gehalte liegen in allen 8 untersuchten Bodenluftproben unterhalb bzw. an der BG. Es liegt lediglich ein Einzelbefund von 0,21 mg/m³ in der RKS6/BL vor.

5 Bewertung

5.1 Wirkungspfad Boden - Mensch

Entsprechend der Einstufung der betroffenen Schutzgüter und dem sich daraus ergebenen Untersuchungsprogramm ist der Wirkungspfad Boden - Mensch [7] aufgrund der weitgehenden Versiegelung des Grundstücks nicht bewertungsrelevant. Unbefestigt ist lediglich eine Grünfläche westlich des Gebäudes, die nicht genutzt wird.

Im Falle einer zukünftigen Entsiegelung des Grundstücks ist dieser Wirkungspfad erneut zu bewerten. Die hier vorliegenden Daten ergeben jedoch auch für diese Fallkonstellation keinen Hinweis auf eine Prüfwertüberschreitung nach BBodSchV für den Oberboden, im vorliegenden Fall weder für die Nutzungsart Gewerbe noch Wohnen. Aus dem gleichen Grund ist auch kein Gefährdungspotential durch Direktkontakt mit dem Boden im Falle zukünftiger Erdbauarbeiten zu besorgen.

5.2 Wirkungspfad Boden - Grundwasser

Die Bodenuntersuchungen auf Schwermetalle, KW, PAK und PCB haben ergeben, dass der Boden am Standort generell unbelastet ist. Die Prüfwerte für den Wirkungspfad Boden-Grundwasser nach "Untersuchung und Beurteilung des Wirkungspfades Boden - Grundwasser - Sickerwasserprognose" (HLUG, [3]) werden ebenso unterschritten wie die Vorsorgewerte der BBodSchV (Anm.: Bewertung PFT s.u.).

Angesichts der Negativbefunde entfällt damit die Grundlage für eine Sickerwasserprognose gemäß BBodSchV zur Bewertung des Wirkungspfades Boden - Grundwasser.

Die fast flächenhaft auf dem Grundstück durchgeführten PFT-Untersuchungen haben in der Hälfte aller Proben geringe Spuren an Perfluorierten Tensiden (PFT) ergeben, ein Einfluss des Löschwassers aus dem Großbranderegnis ist damit am Nordrand der Halle sowie im Bereich der Halle III belegt.

Der maximale Messwert von 0,75 μ g/l im Eluat für Σ PFT bzw. 0,16 μ g/l für Σ PFOS+PFOA bzw. 0,28 μ g/l PFPeA überschreitet die Prüfwerte der Stufe 1 von 0,3 bzw. 3 μ g/l gem. der Bayerischen Leitlinien zur vorläufigen Bewertung von PFC-Verunreinigungen in Wasser und Böden [5] nicht, wobei die o.g. Messwerte bereits im 2:1 Säuleneluat ermittelt wurden, sie liegen im 10:1 Eluat noch um den Faktor 5 geringer. Ein weiterer Handlungsbedarf lässt sich daraus nicht ableiten.

Die Bodenluftuntersuchungen haben tlw. geringfügige Spuren an BTEX sowie ein Einzelbefund an LCKW ergeben. Die geringfügigen BTEX-Spuren können möglicherweise auf eine Hintergrundbelastung hindeuten. Die Messwerte überschreiten die Prüfwerte zur Bewertung des Wirkungspfades Boden - Grundwasser sowie Bodenluft - Innenraumluft [6] nicht, ein weiterer Handlungsbedarf lässt sich daraus nicht ableiten.

6 Zusammenfassung und Empfehlung

Aus der Erstbewertung der Altlastensituation ergab sich durch die frühere Nutzung des Grundstücks als Druckerei im Zeitraum 1965 - 2009 ein Altlastverdachtsmoment, so dass es nach BBodSchG als altlastverdächtige Fläche eingestuft wurde. Zur Überprüfung des Altlastverdachtsmoments wurde eine orientierende Untersuchung nach § 9 BBodSchG durchgeführt, um einen möglichen Eintrag von Schadstoffen aus dem Druckereibetrieb sowie Löschwasser aus einem Großbrandereignis im Jahr 1986 in den Untergrund zu überprüfen.

Der Boden wurde im Oktober 2016 durch zehn Kleinrammbohrungen aufgeschlossen und dabei gewonnene Boden- und Bodenluftproben auf die branchentypischen Parameter KW, PAK, Schwermetalle, PCB und Lösemittel überprüft. Ferner wurden Untersuchungen an Perflourierten Tensiden (PFT) durchgeführt, die Bestandteil des Löschwassers sein können.

Unterhalb von Auffüllböden stehen Fein- und Mittelsande an, die in 7 m Tiefe nicht durchstoßen wurden. Das Grundwasser wurde in 6,8 m Tiefe angetroffen.

Im Ergebnis der Erkundung wurden in keiner Probe branchentypische Schadstoffe im Boden nachgewiesen. In der Bodenluft wurden lediglich geringste Lösemittelspuren festgestellt.

Aus einem Löschwassereintrag wurden im Boden sehr geringe PFT-Spuren in einigen Grundstücksbereichen nachgewiesen. Diese unterschreiten jedoch vorläufige Prüfwerte und erfordern keinen weiteren Handlungsbedarf.

Insgesamt ergibt sich aus den Negativbefunden kein Altlastverdachtsmoment für den Wirkungspfad Boden - Grundwasser.

Die Bewertung des Wirkungspfades Boden - Mensch ist hier irrelevant, weil der Standort mit Ausnahme einer kleinen, nicht genutzten Grünfläche fast vollständig versiegelt ist. Allerdings ergeben die vorliegenden Daten auch keinen Hinweis auf eine Prüfwertüberschreitung nach BBodSchV für den Oberboden. Aus dem gleichen Grund ist auch kein Gefährdungspotential durch Direktkontakt mit dem Boden im Falle zukünftiger Erdbauarbeiten zu besorgen.

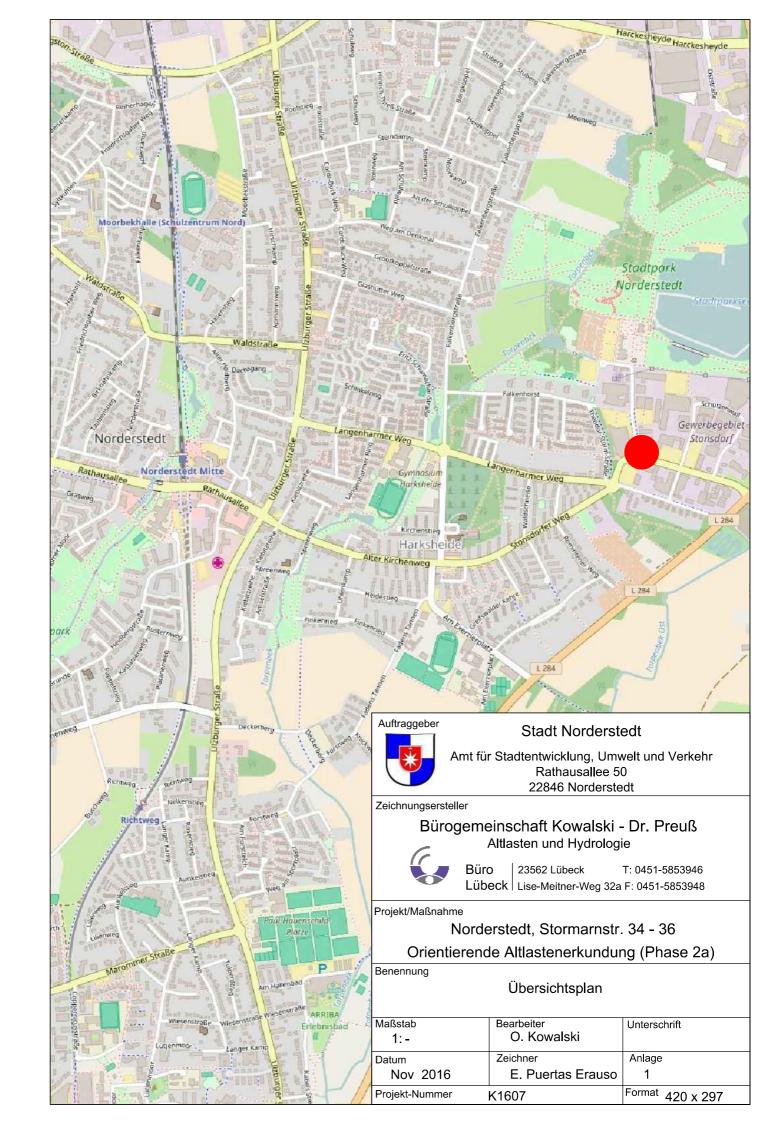
Als Fazit konnte das Altlastverdachtsmoment aufgrund der Grundstückshistorie vollständig entkräftet werden. Es ergibt sich demnach kein weiterer Handlungsbedarf bzgl. der Altlastensituation.

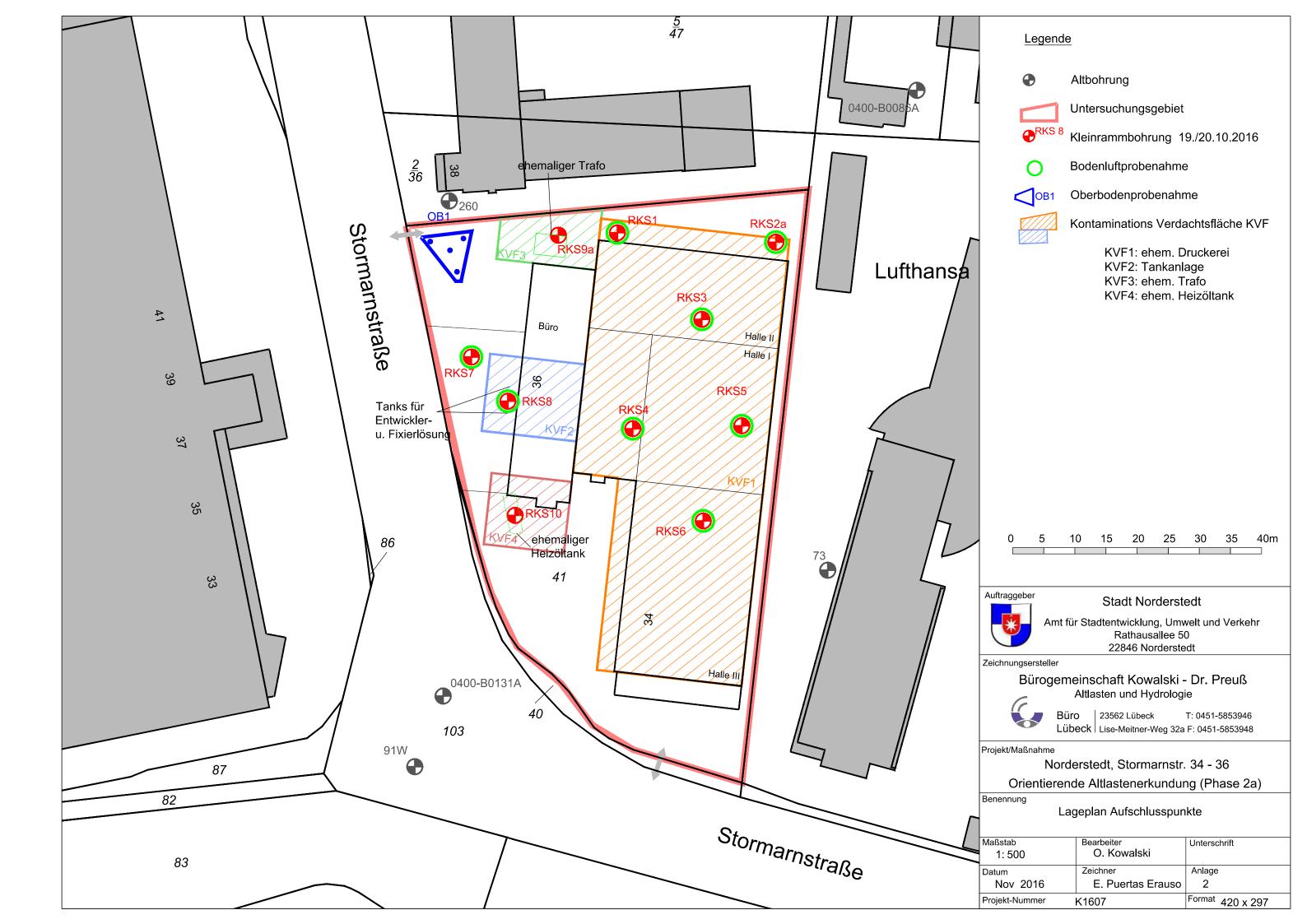
Die in der Leistungsbeschreibung gestellten Fragen werden wie folgt beantwortet:

1. Besteht weiterhin ein Altlastenverdacht?

Da in der aktuellen Untersuchung keine Gefahrstoffe bzw. Kontaminationen nachgewiesen wurden, konnte der Altlastenverdacht nicht bestätigt werden.

2. Geht von den festgestellten Verunreinigungen eine Gefahr für die bestehende Nutzung aus?


Da in der aktuellen Untersuchung keine Gefahrstoffe bzw. Kontaminationen nachgewiesen wurden, geht auch keine Gefahr für die bestehende Nutzung des Grundstücks aus.


3. Sind weitere Untersuchungen zur Differenzierung und Eingrenzung der Verunreinigung erforderlich?

Es sind keine weiteren Untersuchungen erforderlich.

4. Würde eine Gefahr bestehen, wenn sich die Nutzung ändert?

Da in der aktuellen Untersuchung keine Gefahrstoffe bzw. Kontaminationen nachgewiesen wurden, geht auch keine Gefahr für die Nutzung des Grundstücks aus, wenn sich die Nutzung ändert, auch im Falle einer gewerblichen Nutzung mit Hausmeisterwohnung.

Norderstedt Stonsdorf, Stormarnstr. 34-36

Orientierende Altlasterkundung (Phase 2a)

Probennummer															HLUG	BBodSchV			LAGA	111120	
robennummer															Beurt.werte	Vorsorgewerte	Prüfwerte	Z 0	Z 0	Z 1	Z
		RKS1/1	RKS2/1	RKS3/1	RKS4/1	RKS5/1	RKS6/1	RKS6/2	RKS6/3	RKS7/4	RKS8/4	RKS9/1	RKS10/5	OB1	Bo-GW für	(Sand)	Wirkungspt		Lehm/		
iefe unter Gelände	m	0,2-0,4	0,2-0,4	0,2-0,4	0,2-0,4	0,2-0,4	0,24-1,0	1,0-2,0	2,0-3,0	2,8-3,8	3,4-4,4	0,2-0,4	3,7-4,7	0,2-0,4	Phase 2a		ad Boden-	Sand	Schluff		
odenart		Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	(Anhang 3)		Mensch: Gewerbe				
rockenrückstand	%	85,9	94,4	99,0	90,3	98,0	94,8	95,5	98,0	97,4	97,5	94,4	97,0	83,2			acwerbe				
ornanteil < 2mm	%	89,7	96	88,9	94,3	60,7	,	84,5	,	99,1	89,3	49,1	95,2	96,5							†
ornanteil >2mm	%	10,3	4	11,1	5,7	39,3		15,5		0,9	10,7	50,9	4,8	3,5							†
W-Index C10 – C22	mg/kg	<40	<40	<40	<40	<40	-	<40	-	<40	-	<40	<40	<40	-		-	100	100	300	1(
W-Index C10 – C40	mg/kg	<40	<40	<40	<40	<40	-	<40	-	<40	-	<40	<40	<40	2500		-	-	-	600	20
CB (Summe 6)	mg/kg	-	-	-	-	-		-		-	-	<0,06	-	<0,06	5	0,05	40	0,05	0,05	0,15	(
laphthalin	mg/kg	<0,05	<0,05	<0,05	<0,05	<0,05	-	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	5		-				
Benzo(a)pyren	mg/kg	<0,05	<0,05	<0,05	<0,05	<0,05	-	<0,05	-	<0,05	<0,05	<0,05	<0,05	<0,05	1	0,3	12 (5***)	0,3	0,3	0,9	
Summe PAK (EPA)	mg/kg	<0,8	<0,8	<0,8	<0,8	<0,8	-	<0,8	-	<0,8	<0,8	<0,8	<0,8	<0,8	25	3	-	3	3	3	
	mg/kg	6,8	3,8	4,3	4,4	3,4	6,8	5,8	4,8	4,3	2,9	42	-	5,6	150		140	10	15	45	1
	mg/kg	51	6	9	6	7	16	18	30	4	3	7	-	16	500	40	2000	40	70	210	7
admium	mg/kg	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	<0,2	-	<0,2	5	0,4	60	0,4	1	3	1
Chrom, gesamt	mg/kg	8	4	3	5	6	6	4	4	3	2	6	-	9	500	30	1000 (200***)	30	60	180	6
upfer	mg/kg	5	3	22	3	2	11	7	3	3	2	5	-	5	300	20		20	40	120	4
lickel	mg/kg	7	5	6	5	4	8	5	6	6	4	6	-	6	250	15	900	15	50	150	5
Quecksilber	mg/kg	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	<0,07	-	<0,07	5	0,1	80 (100***)	0,1	0,5	1,5	
ink	mg/kg	119	19	23	14	10	31	14	12	11	8	35	-	25	750	60	-	60	150	450	15
Intimon	mg/kg	<1	<1	<1	<1	<1	1	11	-	<1	<1	<1	-	<1	-		250***	-	-	-	
obalt	mg/kg	72	71	78	75	87	-	19	-	18	79	82	-	71	-		300***	-	-	-	
elen	mg/kg	<1	<1	<1	<1	<1	-	<1	-	<1	<1	<1	-	<1	-		-	-	-	-	
ilber	mg/kg	-	-	-	-	-	-	-	-	-	<5	-	-	-	-		-	-	-	-	
Zinn Zinn	mg/kg	<3	<3	<3	<3	<3	-	<1	-	<3	<3	<3	-	<3	-		-	-	-	-	
0:1-Schütteleluat			_	_	_						_							Z 0	Z1.1	Z1.2	Z
H-Wert	-	-	-	-	-	-	7,3	10,5	6,5	-	7,6	-	-	-				6,5-9,5	6,5-9,5	6-12	5,5
· ·	μS/cm	-	-	-	-	-	-	-	-	-	7	-	-	-				250	250	1500	20
Sulfat	mg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-				20	20	50	2
Ammonium	mg/l	-	-	-	-	-	-	-	-	-	<0,06	-	-	-							
Arsen	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	10			14	14	20	6
Blei	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	25			40	40	80	2
Cadmium	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	5			1,5	1,5	3	-
Chrom, gesamt	μg/l	-	-	-	-	-	-	-	-	-	<0,3	-	-	-	50			12,5	12,5	25	6
Cupfer	μg/l	-	-	-	-	-	-	-	-	-	<5	-	-	-	50			20	20	60	1
lickel	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	50			15	15	20	7
Quecksilber	μg/l	-	-	-	-	-	-	-	-	-	<0,2	-	-	-	1			0,5	0,5	1	2
'ink	μg/l	-	-	-	-	-	-	-	-	-	<10	-	-	-	500			150	150	200	6
Antimon	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	10			(6**)			
Cobalt	μg/l	-	-	-	-	-	-	-	-	-	<0,2	-	-	-	50			(40**)			+
Selen	μg/l	-	-	-	-	-	-	-	-	-	<1	-	-	-	10			(10**)			+
Silber	μg/l	-	-	-	-	-	-	-	-	-	<5	-	-	-	- 40						+
inn :1-Säuleneluat	μg/l	-	-	-	-	-	-	-	-		<1	-	-	-	40	Christo O*		7.0	7.0	7.1	-
FBA Perfluorbutansäure	1.0/	0.064	-0.040	-0.040	-0 040	-0.040	_	-0 040		40 04 0	-0.040	-0.040	-0.010	-0 010	Stufe 1*	Stufe 2*		Z 0	Z 0	Z 1	Z
FBS Perfluorbutansaure		0,061 <0,015	<0,010 <0,015	<0,010 <0,015	<0,010 <0,015	<0,010 <0,015	-	<0,010 <0,015	-	<0,010 <0,015	<0,010 <0,015	<0,010 <0,015	<0,010 <0,015	<0,010	3	28 12		3	3	3	1
FPeA Perfluorpentansäi		0,28	<0,015	<0,015	<0,015	<0,015	-	<0,015	-	<0,015	<0,015	<0,015	<0,015	<0,015	3	12		1	3	3	 -
·			<0,010	<0,010	<0,010	<0,010		<0,010	-	<0,010	<0,010	<0,010	<0,010	<0,010	1	4		0,3	1	<u>ی</u>	
FHxS Perfluorhexansulf		0,11 <0,015	<0,010	<0,010	<0,010	<0,010	-	<0,010	-	<0,010	<0,010	<0,010	<0,010	<0,010	- -	-		- 0,3	_ I	I	
		0,16	0,015	<0,015	<0,015	0,015	-	0,029		<0,015	<0,015	<0,015	<0,015	0,015	-	-		<u>-</u>	-	-	
		<0,16	0,04	<0,010	<0,010	<0,010	-	0,029	-	<0,010	<0,010	0,010	<0,010	0,03	0,23	1		<u>-</u>	-	-	
FOA Perfluoroctansäure	LIG/I			<u> 1 1 1 1 1 1 1 1 1 1</u>	· < U.U.IU	ı <∪.∪IU	-	1 0,10		_ <u,uiu< td=""><td>_ <u,uiu< td=""><td>1 0,10</td><td><0,010</td><td>∪,∪∠3</td><td>∪,∠ა</td><td>I</td><td></td><td>-</td><td> 1</td><td>-</td><td></td></u,uiu<></td></u,uiu<>	_ <u,uiu< td=""><td>1 0,10</td><td><0,010</td><td>∪,∪∠3</td><td>∪,∠ა</td><td>I</td><td></td><td>-</td><td> 1</td><td>-</td><td></td></u,uiu<>	1 0,10	<0,010	∪,∪∠3	∪,∠ა	I		-	1	-	
FOS Perfluoroctansaure FOS Perfluoroctansulfor Summe PFOS+PFOA+P		0,16	0,07	<0,03	<0,03	<0,03	_	0,19	_	<0,03	<0,03	0,10	<0,03	0,05	0,3	1		0,1	0,3	0,3	

Labor: Eurofins Umwelt Nord GmbH

= Zuordnung Z1 nach LAGA = Zuordnung Z2 nach LAGA 2,0

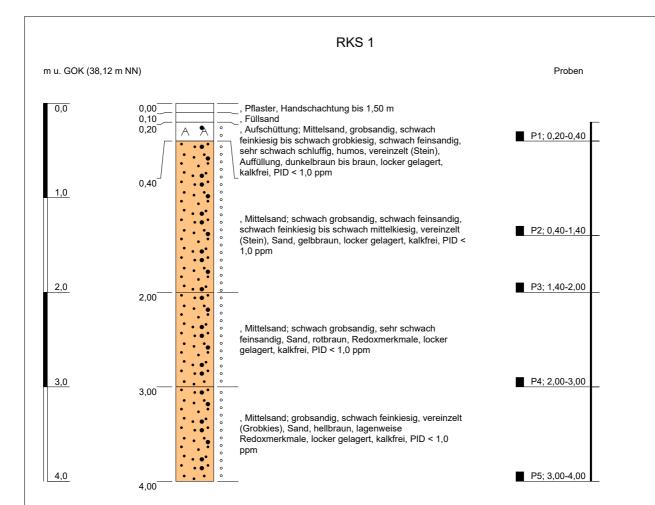
3,0 = Zuordnung >Z2 nach LAGA

^{*} Vorläufige Stufenwerte für PFC Boden-Grundwasser (01/2015)
** nach DepV DK0

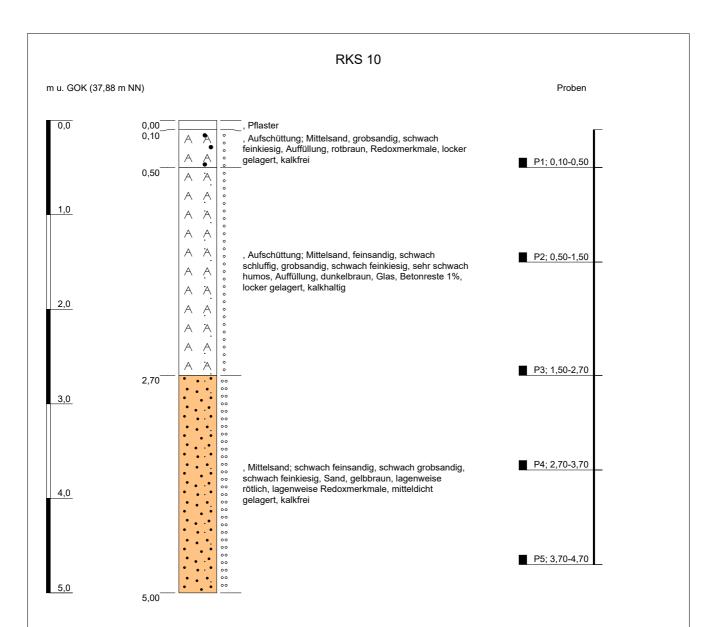
^{***} neuer Prüfwert nach Entwurf 2015 der BBodSchV

Norderstedt Stonsdorf, Stormarnstr. 34-36

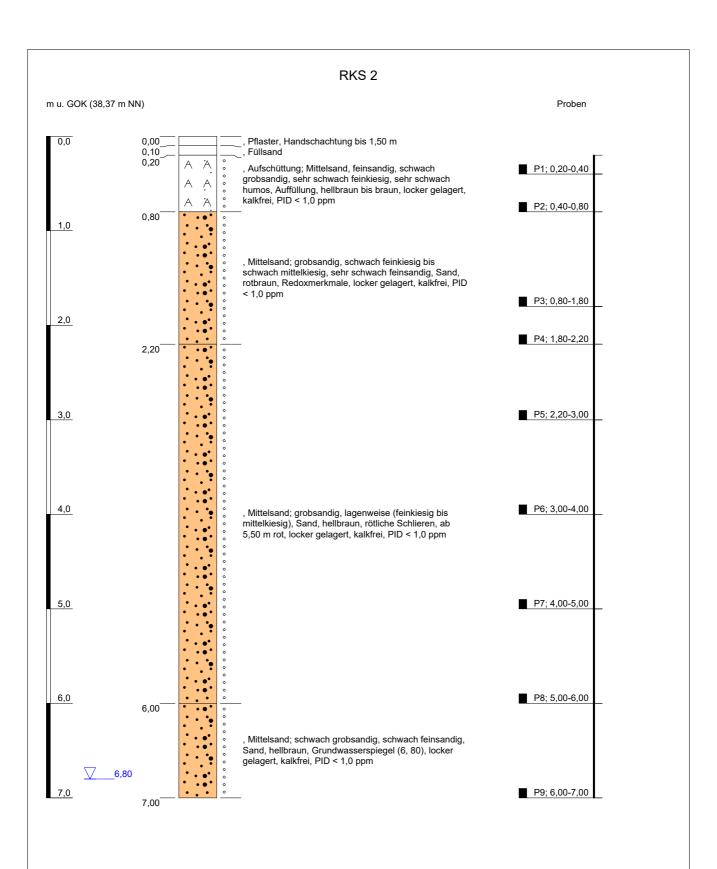
Orientierende Altlasterkundung (Phase 2a)


Ergebnisse der Bo	<mark>denluftana</mark>	llysen								LABO	LA	WA
Bodenluftmessstelle		RKS1	RKS2	RKS3	RKS4	RKS5	RKS6	RKS7	RKS8			
Probenbezeichnung		RKS1/BL	RKS2/BL	RKS3/BL	RKS4/BL	RKS5/BL	RKS6/BL	RKS7/BL	RKS8/BL	ĺ	PW	Mew
Tiefe unter GOK [m]		1-4 m 1-7 m	1-3 m	1-4 m	1-4 m	1-4 m	1-6 m	1-5 m	ľ	PW	MSW	
PN Datum		19.10.2016	19.10.2016	19.10.2016	20.10.2016	19.10.2016	20.10.2016	20.10.2016	20.10.2016	ĺ		
Sauerstoff	Vol%	20,7	20,9	20,8	20,4	20,6	20,7	20,9	20,9			
Kohlendioxid	Vol%	1,64	1,58	1,84	1,54	1,52	1,50	1,42	1,51			
H2S	ppm	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0			
Methan	Vol%	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0			
Summe LCKW	mg/m³	<0,5	<0,5	<0,5	<0,5	<0,5	0,21	<0,5	<0,5		5 - 10	50
Vinylchlorid	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	4		
Dichlormethan	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	80		
trans-1,2-Dichlorethen	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			
cis-1,2-Dichlorethen	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	900		
Trichlormethan	mg/m³	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01			
1,1,1-Trichlorethan	mg/m³	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	1.000		
Tetrachlormethan	mg/m³	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	3		
Trichlorethen	mg/m³	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	<0,01	<0,01	20		
Tetrachlorethen	mg/m³	<0,01	<0,01	<0,01	<0,01	<0,01	0,19	<0,01	<0,01	70		
1,1-Dichlorethen	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			
1,2-Dichlorethan	mg/m³	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			
Summe BTEX	mg/m³	0,43	0,13	0,12	0,14	0,23	0,23	0,07	-		5 - 10	50
Benzol	mg/m³	0,013	0,010	<0,01	0,011	0,010	0,011	<0,01	-	10		
Toluol	mg/m³	0,210	0,069	0,073	0,064	0,110	0,110	0,051	-	1.000		
Ethylbenzol	mg/m³	0,047	0,015	0,014	0,014	0,023	0,024	<0,01	-	200		
o-Xylol	mg/m³	0,130	0,035	0,037	0,044	0,067	0,071	0,015	-	1 000		
m- und p-Xylol	mg/m³	0,033	<0,01	<0,01	0,011	0,017	0,017	<0,01	-	1.000		
Probenahme	: ASBT, Lübeck	<	52	LABO-Orientieru	ingswerte für den	Schadstoffüberg	ang Bodenluft - I	nnenraumluft (09/	/2008)	-	-	1

Analytik: Eurofins, Schwerin

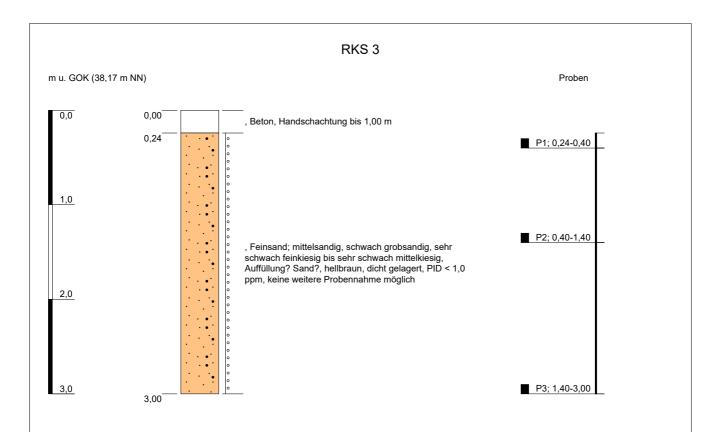

377

Überschreitung der LAWA-Maßnahmenschwellenwerte (> 50 mg/m³)

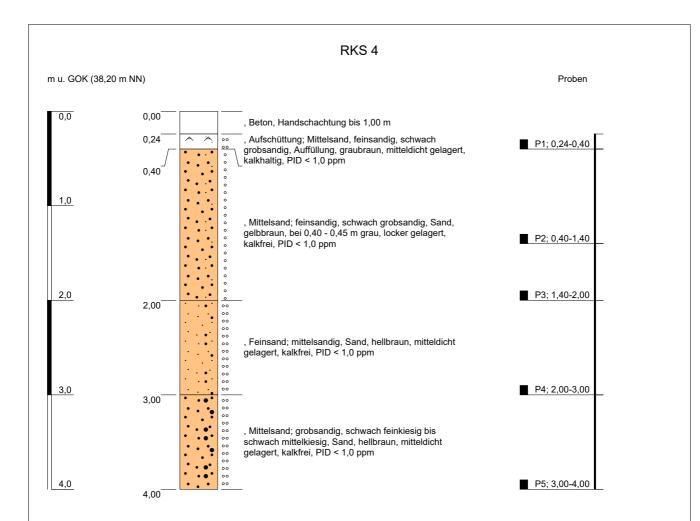

Bürogemeinschaft Kowalski - Dr. Preuß Anlage K1603-4

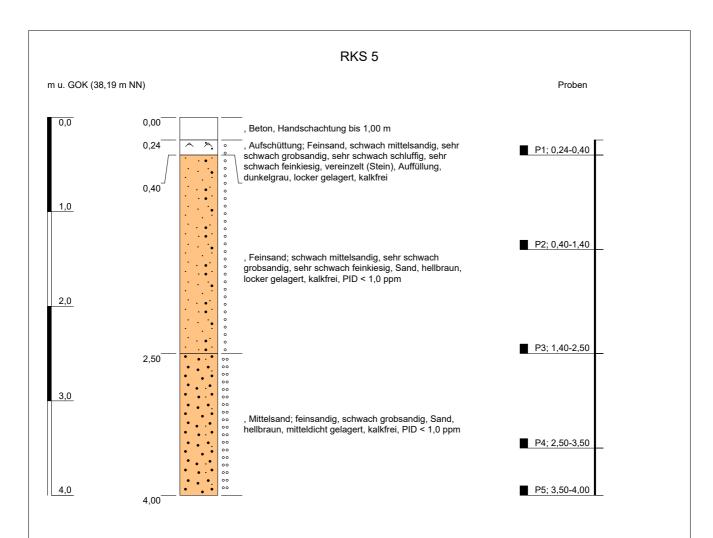
Projekt:	Norderstedt Stormarnstraße 34-3	6			
Bohrung:	RKS 1			**,	
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT	ASBT *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik	* **
Bearbeiter:	Pörksen-Wilkens				
Datum:	19.10.2016	Endtiefe:	4,00m		

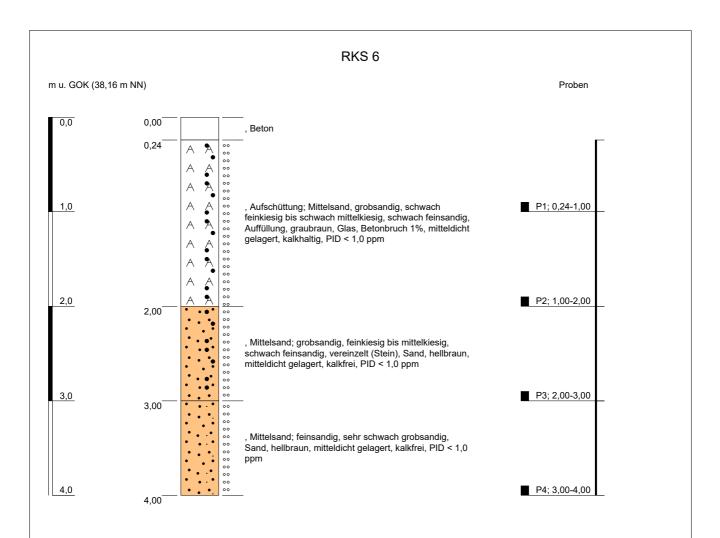
Projekt:	Norderstedt Stormarnstraße 34-3	dt Stormarnstraße 34-36					
Bohrung:	RKS 10			**,			
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT Anlagensicherheit und Bohrtechnik * Umweil *			
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik			
Bearbeiter:	Pörksen-Wilkens						
Datum:	20.10.2016	Endtiefe:	5,00m				

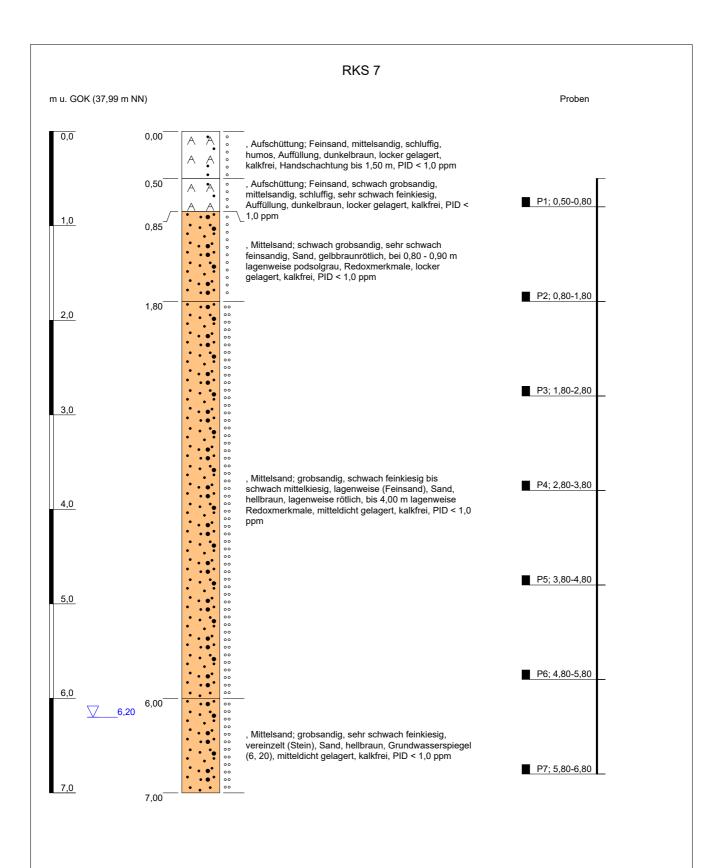

Projekt:	Norderstedt Stormarnstraße 34-3	6		
Bohrung:	RKS 2			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * Anlagensicherheit und Bohrtechnik * Umwelt *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherneit und Bonrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	19.10.2016	Endtiefe:	7,00m	

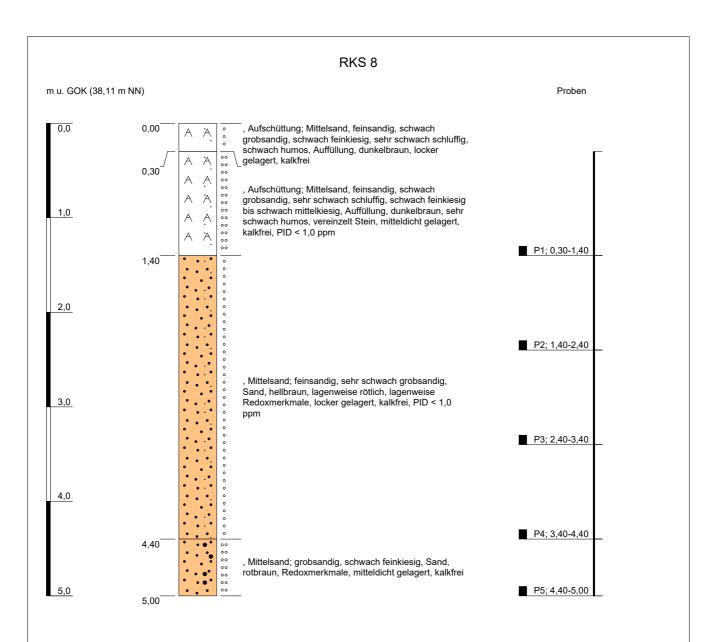
RKS 2a

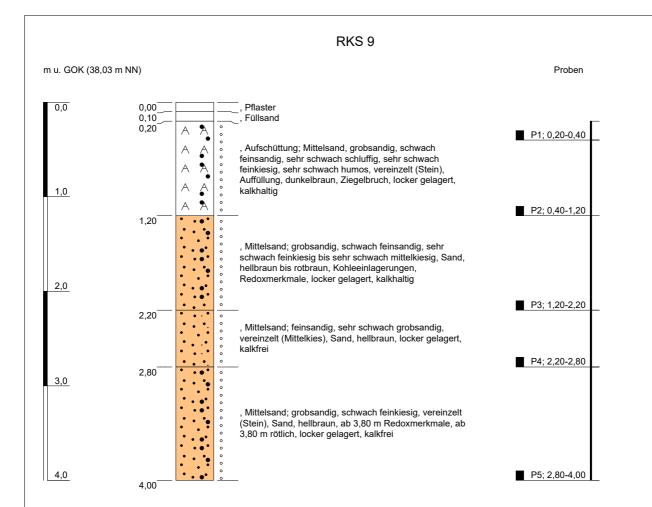

m u. GOK (38,37 m NN)


Projekt:	Norderstedt Stormarnstraße 34-3			
Bohrung:	RKS 2a			**;
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT Anlagensicherheit und Bohrtechnik * Umweit *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	19.10.2016	Endtiefe:	0,70m	


Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 3			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * AND
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	19.10.2016	Endtiefe:	3,00m	


Projekt:	Norderstedt Stormarnstraße 34-3	edt Stormarnstraße 34-36					
Bohrung:	RKS 4						
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT			
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik			
Bearbeiter:	Pörksen-Wilkens						
Datum:	20.10.2016	Endtiefe:	4,00m				


Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 5			**
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASB Anlagensicherheit und Bohrtechnik * Umwe
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik * Umwer
Bearbeiter:	Pörksen-Wilkens			
Datum:	19.10.2016	Endtiefe:	4,00m	


Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 6			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * ASBT * ASBT * AsBT * Universit *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherheit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	20.10.2016	Endtiefe:	4,00m	

Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 7			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * ASBT * Anlagensicherheit und Bohrtechnik * Umwelt *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Aniagensicherneit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	20.10.2016	Endtiefe:	7,00m	

Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 8			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * ANAIgensicherheit und Bohrtechnik * Umwelt *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Aniagensionement and Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	20.10.2016	Endtiefe:	5,00m	

Projekt:	Norderstedt Stormarnstraße 34-36			
Bohrung:	RKS 9			***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß			ASBT UMWELT * ASBT * Anlagensicherheit und Bohrtechnik * Umwelt *
Bohrfirma:	ASBT UMWELT GmbH & Co. KG			Anlagensicherneit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens			
Datum:	19.10.2016	Endtiefe:	4,00m	

Projekt:	Norderstedt Stormarnstraße 34-36		
Bohrung:	RKS 9a		***
Auftraggeber:	Bürogemeinschaft Kowalski - Dr. Preuß		ASBT UMWELT * ASBT * AS
Bohrfirma:	ASBT UMWELT GmbH & Co. KG		Anlagensicherheit und Bohrtechnik
Bearbeiter:	Pörksen-Wilkens		
Datum:	19.10.2016	Endtiefe: 0,70m	

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 1** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) Handschachtung bis 1, 50 m b) Pflaster 0,10 d) c) e) i) h) f) g) a) b) Füllsand 0,20 d) c) e) f) i) h) g) a) Aufschüttung; Mittelsand, grobsandig, schwach feinkiesig bis schwach PID < 1, 0 ppm Ρ1 0,40 grobkiesig, schwach feinsandig, sehr schwach schluffig, humos, b) vereinzelt (Stein) 0,40 d) e) dunkelbraun bis c) locker gelagert braun f) Auffüllung g) h) **i)** 0 a) Mittelsand; schwach grobsandig, schwach feinsandig, schwach PID < 1, 0 ppm P2 1,40 feinkiesig bis schwach mittelkiesig, vereinzelt (Stein) Р3 2,00 2,00 c) locker gelagert d) e) gelbbraun i) 0 g) h) f) Sand a) Mittelsand; schwach grobsandig, sehr schwach feinsandig PID < 1, 0 ppm P4 3,00 b) Redoxmerkmale 3,00 d) c) locker gelagert e) rotbraun h) i) 0 f) Sand g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 1** 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut nach Bohrvorgang punkt Sonstiges kante) f) Übliche g) Geologische h) i) Kalk-**Gruppe** Benennung Benennung gehalt a) Mittelsand; grobsandig, schwach feinkiesig, vereinzelt (Grobkies) PID < 1, 0 ppm P5 4,00 b) lagenweise Redoxmerkmale 4,00 d) c) locker gelagert e) hellbraun h) **i)** 0 f) Sand g) a) b) c) d) e) i) f) h) g) a) b) c) d) e) f) g) h) i) a) b) d) e) c) f) h) i) g) a) b) d) c) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 20.10.2016 **Bohrung: RKS 10** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) b) Pflaster 0,10 d) c) e) i) h) f) g) 0,50 a) Aufschüttung; Mittelsand, grobsandig, schwach feinkiesig b) Redoxmerkmale 0,50 d) e) rotbraun c) locker gelagert i) 0 f) Auffüllung h) g) a) Aufschüttung; Mittelsand, feinsandig, schwach schluffig, grobsandig, 1,50 P3 schwach feinkiesig, sehr schwach humos 2,70 b) Glas, Betonreste 1% 2,70 c) locker gelagert d) e) dunkelbraun f) Auffüllung g) h) i) + a) Mittelsand; schwach feinsandig, schwach grobsandig, schwach P4 3,70 P5 feinkiesig 4,70 b) lagenweise rötlich, lagenweise Redoxmerkmale 5,00 c) mitteldicht gelagert d) e) gelbbraun h) i) 0 f) Sand g) a) b) d) e) c) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 2** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) Benennung Benennung Gruppe gehalt a) Handschachtung bis 1, 50 m b) Pflaster 0,10 d) c) e) i) h) f) g) a) b) Füllsand 0,20 d) c) e) f) i) h) g) a) Aufschüttung; Mittelsand, feinsandig, schwach grobsandig, sehr PID < 1, 0 ppm 0,40 P2 0,80 schwach feinkiesig, sehr schwach humos 0.80 d) e) hellbraun bis c) locker gelagert braun f) Auffüllung g) h) **i)** 0 a) Mittelsand; grobsandig, schwach feinkiesig bis schwach mittelkiesig, PID < 1, 0 ppm P3 1,80 sehr schwach feinsandig P4 2,20 b) Redoxmerkmale 2,20 c) locker gelagert d) e) rotbraun **i)** 0 g) h) f) Sand a) Mittelsand; grobsandig, lagenweise (feinkiesig bis mittelkiesig) PID < 1, 0 ppm 3,00 P6 4,00 P7 5,00 b) rötliche Schlieren, ab 5,50 m rot Р8 6,00 6,00 d) c) locker gelagert e) hellbraun h) i) 0 f) Sand g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 2** 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut nach Bohrvorgang punkt Sonstiges kante) f) Übliche g) Geologische h) i) Kalk-Benennung Benennung Gruppe gehalt a) Mittelsand; schwach grobsandig, schwach feinsandig PID < 1, 0 ppm P9 7,00 Grundwasserspiegel 6.80m b) 7,00 d) c) locker gelagert e) hellbraun h) **i)** 0 f) Sand g) a) b) c) d) e) i) f) h) g) a) b) c) d) e) f) g) h) i) a) b) d) e) c) f) h) i) g) a) b) c) d) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 2a** 2 3 4 5 6 1 a) Benennung der Bodenart Entnommene Proben Bis und Beimengungen Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut punkt nach Bohrvorgang Sonstiges kante) f) Übliche g) Geologische i) Kalkh) gehalt Benennung Benennung Gruppe a) b) Pflaster 0,10 d) e) c) h) i) f) g) a) b) Füllsand 0,20 d) e) c) i) f) h) g) a) Aufschüttung; Mittelsand, feinsandig, schwach grobsandig, sehr schwach feinkiesig, sehr schwach humos b) wegen Bohrhindernis versetzt nach RKS 2 0,70 c) locker gelagert d) e) hellbraun f) Auffüllung g) h) **i)** 0 a) b) d) c) e) f) h) i) g) a) b) c) d) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 3** 2 3 4 5 6 1 a) Benennung der Bodenart Entnommene Bis und Beimengungen Bemerkungen Proben b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche g) Geologische i) Kalkh) Benennung Benennung Gruppe gehalt a) Handschachtung bis 1,00 m b) Beton 0,24 d) c) e) i) f) h) g) PID < 1, 0 ppm, a) Feinsand; mittelsandig, schwach grobsandig, sehr schwach feinkiesig 0,40 P2 bis sehr schwach mittelkiesig keine weitere 1,40 Probennahme P3 3,00 b) möglich 3,00 d) e) hellbraun c) dicht gelagert i) h) f) Auffüllung? Sand? g) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) a) b) c) d) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 20.10.2016 **Bohrung: RKS 4** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) Handschachtung bis 1,00 m b) Beton 0,24 d) c) e) i) h) f) g) 0,40 a) Aufschüttung; Mittelsand, feinsandig, schwach grobsandig PID < 1, 0 ppm b) 0,40 d) c) mitteldicht gelagert e) graubraun h) i) + f) Auffüllung g) a) Mittelsand; feinsandig, schwach grobsandig PID < 1, 0 ppm P2 1,40 P3 2,00 **b)** bei 0,40 - 0,45 m grau 2,00 d) e) gelbbraun c) locker gelagert f) Sand g) h) **i)** 0 a) Feinsand; mittelsandig PID < 1, 0 ppm P4 3,00 b) 3,00 c) mitteldicht gelagert d) e) hellbraun h) i) 0 f) Sand g) a) Mittelsand; grobsandig, schwach feinkiesig bis schwach mittelkiesig PID < 1, 0 ppm P5 4,00 b) 4,00 d) c) mitteldicht gelagert e) hellbraun f) Sand h) i) 0 g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 5** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) Benennung Benennung Gruppe gehalt a) Handschachtung bis 1,00 m b) Beton 0,24 d) c) e) i) h) f) g) a) Aufschüttung; Feinsand, schwach mittelsandig, sehr schwach 0,40 grobsandig, sehr schwach schluffig, sehr schwach feinkiesig, b) vereinzelt (Stein) 0,40 d) c) locker gelagert e) dunkelgrau i) 0 f) Auffüllung h) g) a) Feinsand; schwach mittelsandig, sehr schwach grobsandig, sehr PID < 1, 0 ppm P2 1,40 P3 2,50 schwach feinkiesig 2,50 d) e) hellbraun c) locker gelagert f) Sand h) **i)** 0 g) a) Mittelsand; feinsandig, schwach grobsandig PID < 1, 0 ppm P4 3,50 P5 4,00 b) 4,00 c) mitteldicht gelagert d) e) hellbraun h) **i)** 0 f) Sand g) a) b) d) e) c) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 20.10.2016 **Bohrung: RKS 6** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) b) Beton 0,24 d) c) e) i) h) f) g) a) Aufschüttung; Mittelsand, grobsandig, schwach feinkiesig bis schwach PID < 1, 0 ppm 1,00 P2 mittelkiesig, schwach feinsandig 2,00 b) Glas, Betonbruch 1% 2,00 d) c) mitteldicht gelagert e) graubraun h) i) + f) Auffüllung g) a) Mittelsand; grobsandig, feinkiesig bis mittelkiesig, schwach feinsandig, PID < 1, 0 ppm P3 3,00 vereinzelt (Stein) 3,00 d) e) hellbraun c) mitteldicht gelagert f) Sand g) h) **i)** 0 a) Mittelsand; feinsandig, sehr schwach grobsandig PID < 1, 0 ppm P4 4,00 b) 4,00 c) mitteldicht gelagert d) e) hellbraun h) i) 0 f) Sand g) a) b) d) e) c) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 20.10.2016 **Bohrung: RKS 7** 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) Feinsand; mittelsandig, schluffig, humos Handschachtung bis 1, 50 m, PID < 1, 0 ppm b) 0,50 d) c) locker gelagert e) dunkelbraun h) i) 0 f) Mutterboden g) a) Aufschüttung; Feinsand, schwach grobsandig, mittelsandig, schluffig, PID < 1, 0 ppm 0,80 sehr schwach feinkiesig b) 0,85 c) locker gelagert d) e) dunkelbraun i) 0 h) f) Auffüllung g) a) Mittelsand; schwach grobsandig, sehr schwach feinsandig PID < 1, 0 ppm P2 1,80 b) bei 0,80 - 0,90 m lagenweise podsolgrau, Redoxmerkmale 1.80 d) e) gelbbraunrötlich c) locker gelagert f) Sand h) i) 0 g) a) Mittelsand; grobsandig, schwach feinkiesig bis schwach mittelkiesig, PID < 1, 0 ppm 2,80 P4 lagenweise (Feinsand) 3,80 P5 4,80 b) lagenweise rötlich, bis 4,00 m lagenweise Redoxmerkmale P6 5,80 6,00 c) mitteldicht gelagert d) e) hellbraun g) h) i) 0 f) Sand a) Mittelsand; grobsandig, sehr schwach feinkiesig, vereinzelt (Stein) PID < 1, 0 ppm P7 6,80 Grundwasserspiegel 6.20m b) 7,00 c) mitteldicht gelagert d) e) hellbraun h) f) Sand g) i) 0

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 20.10.2016 **Bohrung: RKS 8** 2 1 3 4 5 6 a) Benennung der Bodenart Entnommene und Beimengungen Proben Bis Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische Benennung Benennung Gruppe gehalt a) Mittelsand; feinsandig, schwach grobsandig, schwach feinkiesig, sehr schwach schluffig, schwach humos b) 0,30 d) c) locker gelagert e) dunkelbraun h) **i)** 0 f) Mutterboden g) a) Aufschüttung; Mittelsand, feinsandig, schwach grobsandig, sehr PID < 1, 0 ppm 1,40 schwach schluffig, schwach feinkiesig bis schwach mittelkiesig b) sehr schwach humos, vereinzelt Stein 1,40 c) mitteldicht gelagert d) e) dunkelbraun i) 0 h) f) Auffüllung g) a) Mittelsand; feinsandig, sehr schwach grobsandig PID < 1, 0 ppm P2 2,40 P3 3,40 P4 4,40 b) lagenweise rötlich, lagenweise Redoxmerkmale 4,40 d) e) hellbraun c) locker gelagert f) Sand g) h) **i)** 0 a) Mittelsand; grobsandig, schwach feinkiesig P5 5,00 b) Redoxmerkmale 5,00 c) mitteldicht gelagert d) e) rotbraun **i)** 0 f) Sand g) h) a) b) d) c) e) h) i) f) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 9** 2 1 3 4 5 6 Entnommene a) Benennung der Bodenart Bis und Beimengungen Proben Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m Ansatzc) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche i) Kalkg) Geologische h) gehalt Benennung Benennung Gruppe a) b) Pflaster 0,10 d) c) e) i) h) f) g) a) b) Füllsand 0,20 d) c) e) f) i) h) g) a) Aufschüttung; Mittelsand, grobsandig, schwach feinsandig, sehr 0,40 P2 1,20 schwach schluffig, sehr schwach feinkiesig, sehr schwach humos, b) Ziegelbruch 1,20 d) e) dunkelbraun c) locker gelagert f) Auffüllung g) h) i) + a) Mittelsand; grobsandig, schwach feinsandig, sehr schwach feinkiesig P3 2,20 bis sehr schwach mittelkiesig b) Kohleeinlagerungen, Redoxmerkmale 2,20 c) locker gelagert d) e) hellbraun bis rotbraun h) i) + g) f) Sand a) Mittelsand; feinsandig, sehr schwach grobsandig, vereinzelt P4 2,80 (Mittelkies) b) 2,80 d) c) locker gelagert e) hellbraun h) i) 0 f) Sand g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 2 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 9** 1 2 3 4 5 6 a) Benennung der Bodenart Entnommene Proben Bis und Beimengungen Bemerkungen b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unternach Bohrgut nach Bohrvorgang punkt Sonstiges kante) f) Übliche g) Geologische h) i) Kalk-Benennung Benennung Gruppe gehalt a) Mittelsand; grobsandig, schwach feinkiesig, vereinzelt (Stein) P5 4,00 b) ab 3,80 m Redoxmerkmale, ab 3,80 m rötlich 4,00 d) e) hellbraun c) locker gelagert h) **i)** 0 f) Sand g) a) b) c) d) e) i) f) h) g) a) b) c) d) e) f) g) h) i) a) b) d) e) c) i) f) h) g) a) b) d) c) e) f) h) i) g)

Schichtenverzeichnis für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Seite: 1 Projekt: Norderstedt Stormarnstraße 34-36 Datum: 19.10.2016 **Bohrung: RKS 9a** 2 3 4 5 1 6 a) Benennung der Bodenart Entnommene Bis und Beimengungen Bemerkungen Proben b) Ergänzende Bemerkungen Sonderprobe ... m Wasserführung Tiefe unter Bohrwerkzeuge in m c) Beschaffenheit d) Beschaffenheit e) Farbe Ansatz-Art Nr Kernverlust (Unterpunkt nach Bohrgut nach Bohrvorgang Sonstiges kante) f) Übliche g) Geologische i) Kalkh) **Gruppe** gehalt Benennung Benennung a) b) Pflaster 0,10 d) c) e) i) f) h) g) a) Aufschüttung; Mittelsand, grobsandig, schwach feinsandig, sehr bei 0, 70 m 0,30 schwach schluffig, sehr schwach feinkiesig, vereinzelt (Stein) Bohrhindernis (Betonfundament), b) Bohrung versetzt 0,70 nach RKS 9 d) e) dunkelbraun c) h) i) + f) Auffüllung g) a) b) c) d) e) f) g) h) i) a) b) d) c) e) f) h) i) g) a) b) c) d) e) f) h) i) g)

Nivellement-Protokoll

Projekt : Stormarnstr. Instrument : GEO PAN-24

34 - 36

Datum: : 20.10.2016 Bearbeiter : D. Buntin

Witterung : bedeckt Nivellierpunkte: RKS 1 - 10

Meß-/ Ansatzpunkt	Rückblick (+) [m]	Vorblick (-) [m]	Seitblick (-)	Höhe ü. NN [m]	Bemerkungen
Schachtdeckel				37,63	
Schachtdeckel	1,89				
RKS 10			1,64	37,88	
RKS 8			1,41	38,11	
RKS7			1,53	37,99	
RKS 7	1,57				
RKS 9		1,53		38,03	
RKS 1			1,44	38,12	
RKS 1	1,76				
RKS 2		1,51		38,37	
RKS2	1,46				
RKS 3		1,66		38,17	
RKS 3	1,73				
RKS 4			1,70	38,20	
RKS 5			1,71	38,19	
RKS 5	1,68				
RKS 6			1,71	38,16	

Unterschrift: Dipl.-Geol. Dietmar Buntin

Projekt:	N	orderstedt, St	ormarnstr. 34	- 36			
Meßstellen-Bezei	chnung: B	L 1					
Probennahmedati	um: 1	9.10.2016			Uhrzeit:	16:59	
Pegelausbau	tempo	orär 🗷	ausgeba	ut 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe	<u>4,00</u> m u	. GOK
	Mater	ial <u>unverrohr</u>	<u>t</u>	Volur	men	<u>8</u> I	
Ringraumdichtung	g <u>Schla</u>	uchpacker					
Geländeoberfläch	e <u>versie</u>	egelt Verbunds	steinpfl. eben	(Bescha	ffenheit)		
Förderleistung		2 I/m	in				
Vorlaufzeit		6_ mir	ı				
Vorlaufvolumen		12	2,0	Prob	evolumen		5
Geruch	00		nslos, 01 = aro 12 = Mineralo			S), 05 = jauch	ig (NH₃),
Witterungsbedin	gungen:						
Außenlufttempera	ıtur	<u>9</u> °C	١	Vindgeschwi	indigkeit max	<u> </u>	<u>0,14</u> m/s
Luftdruck		<u>1013</u> hPa	r	el. Luftfeuch	te		83 %
Vorortmessung	C		L	_abormessur	ng 🗆		
Gasmessgerät G	FG Microted	otor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH ₄	Vol% UEG		0,0	0,0	0,0	0,0	
CO ₂	Vol%	0,83	1,52	1,63	1,63	1,64	
O_2	Vol%	20,9	20,9	20,7	20,7	20,7	
H₂S	ppm	0,0	0,0	0,0	0,0	0,0	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direkt	messung	(Gasmaus 🗆] Ad	dsorber x	
Desorption:	Vor-C	ort 🗆	i	m Labor	x		
	Extra	ktion \square	٦	Thermisch			
Adsorbermaterial:	77 🗆	NIOSH □	enax [sonst	tige: 🗵 Dra	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW [☐ Naph	ithalin 🛚	sonstig	е
Bemerkungen:							
Probennehmer:	DiplGeol.	D. Buntin	La	aborname:			

Projekt:	No	orderstedt, Sto	ormarnstr. 34 -	36			
Meßstellen-Bezei	chnung: Bl	_ 2					
Probennahmedat	um: 19	.10.2016			Uhrzeit:	18:30	
Pegelausbau	tempo	rär 🗷	ausgebaut				
Verrohrung	DN	50_	mm	Entna	ahmetiefe _	<u>6,80</u> m u	. GOK
	Materi	al <u>unverrohr</u>	<u>t</u>	Volun	nen <u>13</u>	<u>3,6</u>	
Ringraumdichtung	Schlau	ıchpacker					
Geländeoberfläch	e <u>versie</u>	<u>gelt, Verbund</u>	steinpfl. eben	(Beschaffe	enheit)		
Förderleistung		2_ I/mi	n				
Vorlaufzeit		<u>10</u> min	l				
Vorlaufvolumen			20	Probe	evolumen		5
Geruch	00		slos, 01 = aron 12 = Mineralöl,			3), 05 = jauch	ig (NH₃),
Witterungsbedin	gungen:						
Außenlufttempera	ntur		Wi	ndgeschwi	ndigkeit max	(<u>0,13</u> m/s
Luftdruck		<u>1013</u> hPa	rel.	Luftfeuch	te		88 %
Vorortmessung	ĸ		Lal	ormessun	g 🗆		
Gasmessgerät <u>G</u>	FG Microtec	tor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH ₄ CO ₂	Vol% UEG Vol%	0,0 0,91	0,0 1,63	0,0 1,53	0,0 1,58	0,0 1,58	
O_2	Vol%	20,9	20,9	20,9	20,9	20,9	
H ₂ S	ppm	0,0	0,0	0,0	0,0	0,0	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direktr	messung \square	Ga	smaus 🗌	A	dsorber x	
Desorption:	Vor-O	t 🗆	im	Labor	x		
	Extrak	tion \square	The	ermisch			
Adsorbermaterial:	77 🗆	NIOSH □	ENAX 🗆	sonst	ige: 🗷 Dr	ägerröhrchen	Typ G
Zu bestimmende		втех 🗆	LCKW □		thalin \square	sonstige	
Bemerkungen:							
Probennehmer:	DiplGeol	D. Buntin	Lab	orname:			

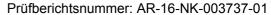
Projekt:	N	lorderstedt, St	ormarnstr. 34	1 - 36			
Meßstellen-Bezei	chnung: E	L 3					
Probennahmedati	um: 1	9.10.2016			Uhrzeit:	20:10	
Pegelausbau	tempe	orär 🗷	ausgeba	ut 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe	<u>3,0</u> m u	. GOK
	Mate	ial <u>unverrohr</u>	<u>t</u>	Volur	men <u>6 l</u>		
Ringraumdichtung	Schla	uchpacker					
Geländeoberfläch	e <u>Betor</u>	ifläche Innenb	ereich	(Beschaff	enheit)		
Förderleistung		2 I/m	in				
Vorlaufzeit		<u>4,5</u> mir	1				
Vorlaufvolumen			9	Probe	evolumen		5
Geruch	00		nslos, 01 = ar 12 = Mineral			S), 05 = jauch	ig (NH₃),
Witterungsbedin	gungen:						
Außenlufttempera	ıtur	<u>19</u> °C	,	Windgeschwi	indigkeit max		<u>0,0,</u> m/s
Luftdruck		<u>1013</u> hPa	1	rel. Luftfeuch	te		<u>68</u> %
Vorortmessung	C		I	Labormessur	ng 🗆		
Gasmessgerät <u>G</u>	FG Microte	ctor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH ₄	Vol% UEG		0,0	0,0	0,0	0,0	
CO ₂	Vol%	0,94	1,80	1,83	1,84	1,84	
O ₂	Vol%	20,9	20,9	20,9	20,8	20,8	
H₂S	ppm	0,0	0,0	0,0	0,0	0,0	
CO Spurenkomponen	ppm ten: Direk	tmessung	0,0	│ 0,0 Gasmaus □] 0,0] Ad	0,0	
Desorption:	Vor-C	ort \square	i	m Labor	x		
	Extra	ktion \Box		Thermisch			
Adsorbermaterial:	77 🗆	NIOSH □	enax [sonst	tige: 🗵 Dra	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW [□ Naph	thalin 🛚	sonstig	е 🗆
Bemerkungen:							
Probennehmer:	DiplGeol.	D. Buntin	L	aborname:			

Projekt:	N	orderstedt, St	ormarnstr. 34	- 36			
Meßstellen-Bezei	chnung: Bl	_ 4					
Probennahmedati	um: 20	0.10.2016			Uhrzeit:	21:30	
Pegelausbau	tempo	rär 🗷	ausgebau	t 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe _	<u>6,80</u> m u	. GOK
	Materi	al <u>unverrohr</u>	<u>t</u>	Volur	men13	3 <u>,6</u>	
Ringraumdichtung	g <u>Schlau</u>	uchpacker					
Geländeoberfläch	e <u>Betoni</u>	fläche Innenb	ereich	(Beschaff	enheit)		
Förderleistung		2_ I/mi	in				
Vorlaufzeit		10_ mir	1				
Vorlaufvolumen			20	Probe	evolumen		5
Geruch	00		nslos, 01 = aro 12 = Mineralö			S), 05 = jauch	ig (NH₃),
Witterungsbedin	ıgungen:						
Außenlufttempera	atur	<u>19</u> °C	W	indgeschwi	indigkeit max	.	<u>0,0</u> m/s
Luftdruck		<u>1015</u> hPa	re	I. Luftfeuch	te		<u>68</u> %
Vorortmessung	x		La	abormessur	ng 🗆		
Gasmessgerät G	FG Microtec	tor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH ₄ CO ₂	Vol% UEG Vol%	0,0 0,40	0,0 1,20	0,0 1,51	0,0 1,54	0,0 1,54	
O_2	Vol%	20,5	20,5	20,5	20,4	20,4	
H ₂ S	ppm	0,0	0,0	0,0	0,0	0,0	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direktı	messung \square	G	asmaus \Box] A	dsorber x	
Desorption:	Vor-O	rt 🗆	im	ı Labor	x		
	Extrak	tion \Box	TI	nermisch			
Adsorbermaterial:	77 🗆	NIOSH □	ENAX 🗆	sonst	tige: 🗷 Dr	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW □] Naph	ithalin 🛚	sonstig	е
Bemerkungen:							
Probennehmer:	DiplGeol.	D. Buntin	La	oorname:			

Projekt:	No	orderstedt, Sto	ormarnstr. 34	- 36			
Meßstellen-Bezei	chnung: Bl	_ 5					
Probennahmedate	um: 19	.10.2016			Uhrzeit:	21:36	
Pegelausbau	tempo	rär 🗷	ausgeba	ut 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe	<u>4,0</u> m u	. GOK
	Materi	al <u>unverrohr</u>	<u>t</u>	Volur	nen	<u>8</u>	
Ringraumdichtung	g <u>Schlau</u>	chpacker					
Geländeoberfläch	e <u>Betonf</u>	läche Innenbe	ereich	(Beschaffe	enheit)		
Förderleistung		2_ I/mi	n				
Vorlaufzeit		<u>6</u> min					
Vorlaufvolumen			12	Probe	evolumen		5
Geruch	00		slos, 01 = ard 12 = Minerald			S), 05 = jauchi	ig (NH ₃),
Witterungsbedin	gungen:						
Außenlufttempera	ntur	<u>19</u> °C	١	Vindgeschwi	ndigkeit max	·	<u>0,0</u> m/s
Luftdruck		<u>1013</u> hPa	r	el. Luftfeuch	te		68 %
Vorortmessung	ĸ		L	.abormessun	g 🗆		
Gasmessgerät <u>G</u>	FG Microtect	tor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH₄	Vol% UEG	0,0	0,0	0,0	0,0	0,0	
$\frac{CO_2}{O_2}$	Vol% Vol%	0,45 20,7	1,43 20,7	1,51 20,7	1,51 20,6	1,52 20,6	
H ₂ S	ppm	0,2	0,2	0,2	0,2	0,2	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direktr	messung \square	(Gasmaus □	Ad	dsorber 🗷	
Desorption:	Vor-Or	t 🗆	i	m Labor	x		
	Extrak	tion \square	٦	hermisch			
Adsorbermaterial:	77 🗆	NIOSH □	enax [] sonst	ige: 🗷 Dra	ägerröhrchen	Typ G
Zu bestimmende		втех 🗆	LCKW [_	thalin 🗆	sonstige	
Bemerkungen:							
Probennehmer:	DiplGeol.	D. Buntin	La	aborname:			

Projekt:	1	Norderstedt, St	ormarnstr. 34	l - 36			
Meßstellen-Bezei	chnung: E	3L 6					
Probennahmedati	um: 2	20.10.2016			Uhrzeit:	20:30	
Pegelausbau	temp	orär 🗷	ausgeba	ut 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe	<u>4,0</u> m u	. GOK
	Mate	rial <u>unverrohr</u>	<u>t</u>	Volur	men	<u>8</u> I	
Ringraumdichtung	g <u>Schla</u>	uchpacker					
Geländeoberfläch	e <u>Betoı</u>	nfläche Innenb	ereich	(Beschaff	enheit)		
Förderleistung		2 I/m	in				
Vorlaufzeit		6 mir	ı				
Vorlaufvolumen			12	Prob	evolumen		5
Geruch	00		nslos, 01 = ar 12 = Mineral			S), 05 = jauch	ig (NH₃),
Witterungsbedin	gungen:						
Außenlufttempera	ıtur	<u>19</u> °C	,	Vindgeschwi	indigkeit max		<u>0,0</u> m/s
Luftdruck		<u>1013</u> hPa	1	el. Luftfeuch	te		<u>68</u> %
Vorortmessung	C		I	_abormessur	ng 🗆		
Gasmessgerät G	FG Microte	ctor G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH ₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH₄	Vol% UEC		0,0	0,0	0,0	0,0	
CO ₂	Vol%	0,52	1,10	1,43	1,48	1,50	
O ₂	Vol%	20,9	20,9	20,9	20,7	20,7	
H₂S	ppm	0,0	0,0	0,0	0,0	0,0	
CO Spurenkomponen	ppm ten: Direk	tmessung	0,0	0,0 Gasmaus 🗀] 0,0] Ad	dsorber x	
Desorption:	Vor-C	Ort 🗆	i	m Labor	x		
	Extra	ktion \Box	-	Thermisch			
Adsorbermaterial:	77 🗆	NIOSH □	enax [sonst	tige: 🗵 Dra	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW [□ Naph	ithalin 🛚	sonstige	е
Bemerkungen:							
Probennehmer:	DiplGeol	. D. Buntin	L	aborname:			

Projekt:	No	orderstedt, Sto	ormarnstr. 34	- 36			
Meßstellen-Bezei	chnung: BL	. 7					
Probennahmedati	um: 20	.10.2016			Uhrzeit:	16:15	
Pegelausbau	tempo	är 🗷	ausgebau	ıt 🗆			
Verrohrung	DN	50_	mm	Entna	ahmetiefe	<u>6,80</u> m u.	. GOK
	Materia	al <u>unverrohr</u>	<u>t</u>	Volur	men13	<u>3,6</u>	
Ringraumdichtung	g <u>Schlau</u>	chpacker					
Geländeoberfläch	e <u>Rasen</u>	fläche, eben		(Beschaff	enheit)		
Förderleistung		2	n				
Vorlaufzeit		10_ min					
Vorlaufvolumen			20	Probe	evolumen		5
Geruch	00		slos, 01 = arc 12 = Mineralö			S), 05 = jauchi	g (NH ₃),
Witterungsbedin	gungen:						
Außenlufttempera	ntur	<u>9</u> °C	٧	/indgeschwi	ndigkeit max	.	<u>0,16</u> m/s
Luftdruck		<u>1016</u> hPa	re	el. Luftfeuch	te		<u>78</u> %
Vorortmessung	ĸ		L	abormessun	ng 🗆		
Gasmessgerät <u>G</u>	FG Microtect	or G 460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH₄	Vol% UEG	0,0	0,0	0,0	0,0	0,0	
$\frac{CO_2}{O_2}$	Vol% Vol%	0,29 20,9	0,44 20,9	1,40 20,9	1,42 20,9	1,42 20,9	
H ₂ S	ppm	0,0	0,0	0,0	0,0	0,0	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direktr	nessung \square	G	asmaus 🗆	l Ad	dsorber 🗷	
Desorption:	Vor-Or	t \square	ir	n Labor	x		
	Extrak	tion \square	Т	hermisch			
Adsorbermaterial:	77 🗆	NIOSH □	ENAX [] sonst	ige: 🗷 Dra	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW [☐ Naph	thalin \square	sonstige	, 🗆
Bemerkungen:							
Probennehmer:	DiplGeol. I	D. Buntin	La	borname:			



Projekt:	No	orderstedt, St	ormarnstr. 34	- 36			
Meßstellen-Bezei	chnung: Bl	. 8					
Probennahmedati	um: 20	.10.2016			Uhrzeit:	16:55	
Pegelausbau	tempo	rär 🗴	ausgeba	ut 🗆			
Verrohrung	DN	50	mm	Entna	ahmetiefe	<u>5,0</u> m u	. GOK
	Materi	al <u>unverrohr</u>	<u>t</u>	Volur	men	<u>10</u> ।	
Ringraumdichtung	Schlau	chpacker					
Geländeoberfläch	e <u>Rasen</u>	fläche, eben		(Beschaffe	enheit)		
Förderleistung		2_ I/mi	in				
Vorlaufzeit		<u>7,5</u> min	ı				
Vorlaufvolumen			15	Probe	evolumen		5
Geruch	00		islos, 01 = ar 12 = Mineral			S), 05 = jauchi	g (NH ₃),
Witterungsbedin	gungen:						
Außenlufttempera	ıtur	8 °C	\	Vindgeschwi	ndigkeit max	<u> </u>	<u>0,16</u> m/s
Luftdruck		<u>1013</u> hPa	r	el. Luftfeuch	te		<u>78</u> %
Vorortmessung	C		l	₋abormessun	g 🗆		
Gasmessgerät <u>G</u>	FG Microtect	or G460					
Parameter	Einheit	1 min.	3 min.	5 min.	10 min.	15 min.	
CH₄	Vol%	0,0	0,0	0,0	0,0	0,0	
CH₄	Vol% UEG	0,0	0,0	0,0	0,0	0,0	
CO_2	Vol%	0,30	0,89	1,50	1,52	1,51	
O_2	Vol%	20,9	20,9	20,9	20,9	20,9	
H₂S	ppm	0,0	0,0	0,0	0,0	0,0	
CO	ppm	0,0	0,0	0,0	0,0	0,0	
Spurenkomponen	ten: Direktr	nessung \square	(Gasmaus \square	l Ad	dsorber 🗷	
Desorption:	Vor-Or	t \square	i	m Labor	x		
	Extrak	tion \square	-	Thermisch			
Adsorbermaterial:	77 🗆	NIOSH □	enax [☐ sonst	ige: 🗷 Dra	ägerröhrchen	Тур G
Zu bestimmende	Parameter:	втех 🗆	LCKW [☐ Naph	thalin 🗌	sonstige	, 🗆
Bemerkungen:							
Probennehmer:	DiplGeol.	D. Buntin	L	aborname:			

Probenahmeprotokoll		Obe	<u>rbode</u> n	-Beprobung		
A. Allgemeine Angaben						
Auftraggeber:	Stadt Norders	stedt		Projekt-Nr.:	K1607	
Landkreis/Ort/Straße:	Norderstedt,	Storma	rnstraße 3	4-36		
Grund der Probenahme:	Beschaffenhe	eitsunte	rsuchung	Probenahmedatum:	20.10	.2016
Probenbezeichnung	OB1			Probenahmeuhrzeit:	18:0	0
Anwesende Personen:	Britta Pörksei	า-Wilke	ns (BGKP), Dietmar Buntin (A	ASBT)	
Entnahmestelle:		(s. Lag	jeplan)	Rechtswert:		
				Hochwert:		
Entnahmeort:	Bereich Park	olatz bz	w. Auffahr	t		
Vermutete Schadstoffe/Gefährdungen:	MKW, SM, P	FT, PAI	<			
Labor	Eurofins Umv	velt Nor	d			
B. Vor-Ort-Gegebenheiten						
Bodenart/Allgemeine Beschreibung:	Verbundpflas					
			cm aufge	schüttet, kein Grun	dwasser	
Probenahmegerät und -material:	Probensteche	er				
Probenahmeverfahren:	Mischprobe	1	1			
Beprobungstiefe	0,25-0,45	m		1		
Anzahl der Einzelproben:	4	Stück		Mischproben:		1 Stücl
Anzahl Einzelproben je Mischprobe:				T	1	Stücl
Probenmenge:	500 g			Probengefäß:	Braungla	as
Probenvorbereitungschritte:	Homogenisieru	ıng		T	ı	
Probentransport und -lagerung:	kühl			Stabilisierung	./.	
Kühlung (evtl. Kühltemperatur):	n.n.					
Vor-Ort-Untersuchung:		./.				
Beobachtungen bei der Probenahme:	keine					
Lageskizze (Lage der Haufwerke, Probe	nahmepunkte, St	raßen, Ge	ebäude usw.):		
Stormarnstraße	⊕ 260		RKS9a	RKS3		
Probenehmer: Britta Pörksen-Wilkens	BKS7 IAAA	2011	907		6	
Ort, Datum: Stonsdorf/Norders	tedt, 20.10.20	16				
Unterschrift: gez. Britta Pörkse	n-Wilkens					
Bemerkungen: keine						

Dipl.-Ing. Oliver Kowalski Anhang A5

Seite 1 von 2

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 - Schwerin

Dipl.-Ing. Oliver Kowalski c/o Bürogemeinschaft Kowalski - Dr. Preuß Lise-Meitner-Weg 32a 23562 Lübeck

Titel: Prüfbericht zu Auftrag 31629926

Prüfberichtsnummer: AR-16-NK-003737-01

Auftragsbezeichnung: K 1607 Norderstedt / Stonsdorf

Anzahl Proben: 2

Probenart: Boden

Probeneingangsdatum: 24.10.2016

Prüfzeitraum: 24.10.2016 - 15.11.2016

Kommentar: K 1607 Orientierende Altlastenerkundung Norderstedt / Stonsdorf

Hier: Untersuchung von Bodenproben

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Dr. Konstanze Kiersch
Niederlassungsleitung

Tel. +49 385 5727550

Digital signiert, 17.11.2016

Dr. Konstanze Kiersch
Niederlassungsleitung

				Probenbeze	eichnung	RKS 6/1	RKS 6/3
				Probennum	nmer	016224350	016224351
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Physikalisch-chemisc	he Kenngrö	ßen au	s der Originalsub	stanz			
Trockenmasse	AN/u	LG004	DIN EN 14346	0,1	Ma%	94,8	98,0
Elemente aus dem Kö	nigswasser	aufsch	luss nach DIN EN	13657			
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	6,8	4,8
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	2	mg/kg TS	16	30
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	< 0,2
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	6	4
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	11	3
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	8	6
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,07	mg/kg TS	< 0,07	< 0,07
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	31	12
Physikalisch-chemisc	he Kenngrö	ßen au	ıs dem 10:1-Schüt	teleluat nach	DIN EN 12457	·-4	1
pH-Wert	AN/f	LG004	DIN 38404-C5			7,3	6,5
			1		_	1	

Erläuterungen

BG: Bestimmungsgrenze

Lab.: Kürzel des durchführenden Labors Akkr.: Akkreditierungskürzel des Prüflabors

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

/u: Die Analyse des Parameters erfolgte in Untervergabe.

/f: Die Analyse des Parameters erfolgte in Fremdvergabe.

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 - Schwerin

Dipl.-Ing. Oliver Kowalski c/o Bürogemeinschaft Kowalski - Dr. Preuß Lise-Meitner-Weg 32a 23562 Lübeck

Dieser Prüfbericht ersetzt den Prüfbericht Nr. AR-16-NK-003558-01 vom 03.11.2016 wegen Erweiterung des Prüfumfangs und Änderung der Messergebnisse.

Titel: Prüfbericht zu Auftrag 31629926

Prüfberichtsnummer: AR-16-NK-003558-02

Auftragsbezeichnung: K 1607 Norderstedt / Stonsdorf

Anzahl Proben: 11

Probenart: Boden

Probenahmedatum: 20.10.2016, 19.10.2016

Probenehmer: Auftraggeber
Probeneingangsdatum: 24.10.2016

Prüfzeitraum: 24.10.2016 - 14.11.2016

Kommentar: K 1607 Orientierende Altlastenerkundung Norderstedt / Stonsdorf

Hier: Untersuchung von Bodenproben

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Dr. Konstanze Kiersch Digital signiert, 22.11.2016
Niederlassungsleitung Dr. Konstanze Kiersch
Tel. +49 385 5727550 Niederlassungsleitung

Amtsgericht Oldenburg HRB 141387

USt.-ID.Nr. DE 228 91 2525

				Probenbeze	eichnung	OB 1 (0,25 m - 0,45 m)	RKS 1/1 (0,2 m - 0,4 m)	RKS 2/1 (0,2 m - 0,4 m)
				Probenahm	edatum/ -zeit	20.10.2016	19.10.2016	19.10.2016
				Probennum		316108030	316108031	316108032
Parameter	Lab.	Akkr.	Methode	BG	Einheit	0.0.0000		0.0.0002
Probenvorbereitung Feststo		1						
Fraktion > 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	3,5	10,3	4,0
Fraktion < 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	96,5	89,7	96,0
Physikalisch-chemische Ke	⊥ nnarö	Ren au	⊥ ıs der Originalsub	stanz				
Trockenmasse	AN/u		DIN EN 14346	0,1	Ma%	83,2	85,9	94,4
Elemente aus dem Königsw	asser	aufsch	luss nach DIN FN			,	<u> </u>	,
Antimon (Sb)	AN/f	1	DIN EN ISO 17294-2	1	mg/kg TS	< 1	< 1	< 1
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	5,6	6,8	3,8
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	2	mg/kg TS	16	51	6
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	< 0,2	< 0.2
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	9	8	4
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	71	72	71
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	5	5	3
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	6	7	5
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,07	mg/kg TS	< 0,07	< 0,07	< 0.07
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	< 1	< 1	< 1
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	5	mg/kg TS	-	-	_
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	25	119	19
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	3	mg/kg TS	< 3	< 3	< 3
Organische Summenparame	ter a	⊔ us der	⊥ Originalsubstanz					
Kohlenwasserstoffe C10-C22		1	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40		LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
PAK aus der Originalsubsta	nz (Fr	aktion	< 2 mm)		1 0 0			
Naphthalin	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0.05
Acenaphthylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0.05
Acenaphthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0.05	< 0,05	< 0.05
Fluoren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Phenanthren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chrysen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[b]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[k]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[ghi]perylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	AN/f	LG004	DIN ISO 18287		mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)

				Probenbeze	ichnung	OB 1 (0,25 m - 0,45 m)	RKS 1/1 (0,2 m - 0,4 m)	RKS 2/1 (0,2 m - 0,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	19.10.2016	19.10.2016
				Probennum	mer	316108030	316108031	316108032
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)					
PCB 28	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 52	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 101	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 153	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 138	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 180	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
Summe 6 DIN-PCB exkl. BG	AN/f	LG004	DIN 38414-S20/DIN ISO 10382		mg/kg TS	-	-	-
Physikalisch-chemische Ke	nngrö	ßen au	ıs dem 10:1-Schütte	eleluat nach l	DIN EN 12457	-4	•	
pH-Wert	AN/f	LG004	DIN 38404-C5			-	-	-
Leitfähigkeit bei 25°C	AN/f	LG004	DIN EN 27888	5	μS/cm	-	-	-
Anionen aus dem 10:1-Schü	ittelelı	uat nac	h DIN EN 12457-4	1	1	I	ı	
Sulfat	AN/f	LG004	DIN EN ISO 10304-1	1,0	mg/l	-	-	-
Kationen aus dem 10:1-Sch	üttelel	uat na	ch DIN EN 12457-4					
Ammonium	AN/f	LG004	DIN ISO 15923-1	0,06	mg/l	-	-	-
Elemente aus dem 10:1-Sch	üttele	luat na	ch DIN EN 12457-4					
Antimon (Sb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,0003	mg/l	-	-	-
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	0,0002	mg/l	-	-	-
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	-
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,0002	mg/l	-	-	-
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	-
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	0,01	mg/l	-	-	-
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-

				Probenbeze	ichnung	OB 1 (0,25 m - 0,45 m)	RKS 1/1 (0,2 m - 0,4 m)	RKS 2/1 (0,2 m - 0,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	19.10.2016	19.10.2016
				Probennumi	mer	316108030	316108031	316108032
Parameter	Lab.		Methode	BG	Einheit			
PFT aus dem 10:1-Schüttele	luat n	ach DI	N EN 12457-4					
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	0,012	< 0,01
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	0,056	< 0,01
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	0,022	< 0,01
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	0,020	< 0,01
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	0,032	< 0,01
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	< 0,01	0,015
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	(n. b.) 1)	0,0320	0,0148
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	< 0,01	< 0,01
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,01	< 0,01	0,011
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	(n. b.) 1)	0,149	0,0258
PFT aus dem 2:1-Säulenelua	at nac	h DIN	19528	•	•			
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	0,061	< 0,010
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	0,28	< 0,010
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	0,11	< 0,010
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	0,10	< 0,010
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,030	0,16	0,040
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,023	< 0,010	0,074
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,0530	0,160	0,114
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	0,037	< 0,010
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	0,055
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,0530	0,748	0,169

				Probenbezei	chnung	OB 1 (0,25 m - 0,45 m)	RKS 1/1 (0,2 m - 0,4 m)	RKS 2/1 (0,2 m - 0,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	19.10.2016	19.10.2016
				Probennummer		316108030	316108031	316108032
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Sonstige Parameter				-	1		•	
Arsen	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/l	-	-	-
Blei	AN/f	LG004	DIN EN ISO 17294-2	2	mg/l	-	-	-
Cadmium	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/l	-	-	-
Chrom	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Cobalt	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Kupfer	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Nickel	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Quecksilber	AN/f	LG004	DIN EN ISO 12846	0,007	mg/l	-	-	-
Selen	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Zink	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Zinn	AN/f	LG004	DIN EN ISO 17294-2	3	mg/l	-	-	-
Antimon	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-

				Probenbeze	ichnung	RKS 3/1 (0,24 m - 0,4 m)	RKS 4/1 (0,24 m - 0,4 m)	RKS 5/1 (0,24 m - 0,4 m)
				Probenahm	edatum/ -zeit	19.10.2016	20.10.2016	19.10.2016
				Probennum		316108033	316108034	316108035
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Probenvorbereitung Feststo	ffe							
Fraktion > 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	11,1	5,7	39,3
Fraktion < 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	88,9	94,3	60,7
Physikalisch-chemische Ke	nngrö	⊥ ßen au	ıs der Originalsub	_⊔stanz				
Trockenmasse	AN/u	1	DIN EN 14346	0,1	Ma%	99,0	90,3	98,0
Elemente aus dem Königsw	asser	⊥ aufsch	luss nach DIN EN	13657				
Antimon (Sb)	AN/f		DIN EN ISO 17294-2	1	mg/kg TS	< 1	< 1	< 1
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	4,3	4,4	3,4
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	2	mg/kg TS	9	6	7
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	< 0,2	< 0,2
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	3	5	6
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	78	75	87
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	22	3	2
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	6	5	4
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,07	mg/kg TS	< 0,07	< 0,07	< 0,07
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	< 1	< 1	< 1
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	5	mg/kg TS	-	-	-
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	23	14	10
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	3	mg/kg TS	< 3	< 3	< 3
Organische Summenparame	eter a	us der	Originalsubstanz					
Kohlenwasserstoffe C10-C22	AN/f	LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
Kohlenwasserstoffe C10-C40	AN/f	LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	< 40
PAK aus der Originalsubsta	nz (Fr	aktion	< 2 mm)		1			
Naphthalin	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0.05	< 0,05	< 0.05
Acenaphthylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Acenaphthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Phenanthren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Chrysen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[b]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[k]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[a]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Benzo[ghi]perylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	AN/f	LG004	DIN ISO 18287		mg/kg TS	(n. b.) ¹⁾	(n. b.) ¹⁾	(n. b.) 1)

				Probenbeze	ichnung	RKS 3/1 (0,24 m - 0,4 m)	RKS 4/1 (0,24 m - 0,4 m)	RKS 5/1 (0,24 m - 0,4 m)
				Probenahme	edatum/ -zeit	19.10.2016	20.10.2016	19.10.2016
				Probennum	mer	316108033	316108034	316108035
Parameter	Lab.		Methode	BG	Einheit			
PCB aus der Originalsubsta	nz (Fr	aktion						
PCB 28	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 52	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 101	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 153	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 138	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 180	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
Summe 6 DIN-PCB exkl. BG	AN/f	LG004	DIN 38414-S20/DIN ISO 10382		mg/kg TS	-	-	-
Physikalisch-chemische Ke	nngrö	ßen au	ıs dem 10:1-Schütte	eleluat nach	DIN EN 12457	-4		
pH-Wert	AN/f	LG004	DIN 38404-C5			-	-	-
Leitfähigkeit bei 25°C	AN/f	LG004	DIN EN 27888	5	μS/cm	-	-	-
Anionen aus dem 10:1-Schü	ittelelu	uat nac	h DIN EN 12457-4					
Sulfat	AN/f	LG004	DIN EN ISO 10304-1	1,0	mg/l	-	-	-
Kationen aus dem 10:1-Sch	üttelel	uat na	ch DIN EN 12457-4					
Ammonium	AN/f	LG004	DIN ISO 15923-1	0,06	mg/l	-	-	-
Elemente aus dem 10:1-Sch	üttele	luat na	ch DIN EN 12457-4		•		•	
Antimon (Sb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,0003	mg/l	-	-	-
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	0,0002	mg/l	-	-	-
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	-
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,0002	mg/l	-	-	-
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	-
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	0,01	mg/l	-	-	-
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	-

				Probenbezei	chnung	RKS 3/1 (0,24 m - 0,4 m)	RKS 4/1 (0,24 m - 0,4 m)	RKS 5/1 (0,24 m - 0,4 m)
				Probenahme	datum/ -zeit	19.10.2016	20.10.2016	19.10.2016
				Probennumr	ner	316108033	316108034	316108035
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PFT aus dem 10:1-Schüttele	luat n	ach DI	N EN 12457-4					
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	-	-	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	-	-	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	-	-	(n. b.) 1)
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-	< 0,01
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	-	-	(n. b.) 1)
PFT aus dem 2:1-Säulenelua	at nacl	n DIN 1	19528	•				
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	0,010
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	(n. b.) 1)	(n. b.) 1)	0,0100
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	(n. b.) 1)	(n. b.) 1)	0,0100

				Probenbezei	chnung	m)	RKS 4/1 (0,24 m - 0,4 m)	RKS 5/1 (0,24 m - 0,4 m)
				Probenahme	datum/ -zeit	19.10.2016	20.10.2016	19.10.2016
				Probennummer		316108033	316108034	316108035
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Sonstige Parameter	-		I					
Arsen	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/l	-	-	-
Blei	AN/f	LG004	DIN EN ISO 17294-2	2	mg/l	-	-	-
Cadmium	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/l	-	-	-
Chrom	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Cobalt	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Kupfer	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Nickel	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Quecksilber	AN/f	LG004	DIN EN ISO 12846	0,007	mg/l	-	-	-
Selen	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Zink	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-
Zinn	AN/f	LG004	DIN EN ISO 17294-2	3	mg/l	-	-	-
Antimon	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-	-

				Probenbeze	ichnung	RKS 6/2 (1,0 m - 2,0 m)	RKS 7/4 (2,8 m - 3,8 m)	RKS 8/4 (3,4 m - 4,4 m)	
				Probenahm	edatum/ -zeit	20.10.2016	20.10.2016	20.10.2016	
				Probennummer		316108036	316108037	316108040	
Parameter	Lab.	Akkr.	Methode	BG	Einheit	01010000	01010001	010100010	
Probenvorbereitung Feststo	offe								
Fraktion > 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	15,5	0,9	10,7	
Fraktion < 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	84,5	99,1	89,3	
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsub	stanz					
Trockenmasse	AN/u	LG004	DIN EN 14346	0,1	Ma%	95,5	97,4	97,5	
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN	13657					
Antimon (Sb)	AN/f	1	DIN EN ISO 17294-2	1	mg/kg TS	-	< 1	< 1	
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	-	4,3	2,9	
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	2	mg/kg TS	-	4	3	
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	-	< 0,2	< 0,2	
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	-	3	2	
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	-	18	79	
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	-	3	2	
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	-	6	4	
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,07	mg/kg TS	-	< 0.07	< 0.07	
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	_	< 1	< 1	
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	5	mg/kg TS	_	_	< 5	
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	-	11	8	
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	3	mg/kg TS	-	< 3	< 3	
Organische Summenparame	eter aı	ıs der	∟ Originalsubstanz						
Kohlenwasserstoffe C10-C22		1	DIN EN 14039	40	mg/kg TS	< 40	< 40	_	
Kohlenwasserstoffe C10-C40		LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40	_	
PAK aus der Originalsubsta		aktion	< 2 mm)	1	113113113				
Naphthalin	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0.05	< 0,05	< 0.05	
Acenaphthylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0.05	
Acenaphthen	AN/f		DIN ISO 18287	0,05	mg/kg TS	< 0.05	< 0,05	< 0.05	
Fluoren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Phenanthren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Benzo[a]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Chrysen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Benzo[b]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Benzo[k]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Benzo[a]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Indeno[1,2,3-cd]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Dibenzo[a,h]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Benzo[ghi]perylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05	< 0,05	
Summe 16 EPA-PAK exkl.BG	AN/f	LG004	DIN ISO 18287	3,30	mg/kg TS	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)	

				Probenbezei	ichnung	RKS 6/2 (1,0 m - 2,0 m)	RKS 7/4 (2,8 m - 3,8 m)	RKS 8/4 (3,4 m - 4,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	20.10.2016	20.10.2016
				Probennum	mer	316108036	316108037	316108040
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)	1	1			
PCB 28	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 52	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 101	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 153	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 138	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
PCB 180	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	-	-	-
Summe 6 DIN-PCB exkl. BG	AN/f	LG004	DIN 38414-S20/DIN ISO 10382		mg/kg TS	-	-	-
Physikalisch-chemische Ke	nngrö	ßen au	ıs dem 10:1-Schütte	eleluat nach I	DIN EN 12457	'-4	•	
pH-Wert	AN/f	LG004	DIN 38404-C5			10,5	-	7,6
Leitfähigkeit bei 25°C	AN/f	LG004	DIN EN 27888	5	μS/cm	-	-	7
Anionen aus dem 10:1-Schü	ittelelı	uat nac	h DIN EN 12457-4			•		
Sulfat	AN/f	LG004	DIN EN ISO 10304-1	1,0	mg/l	-	-	< 1,0
Kationen aus dem 10:1-Sch	üttelel	uat na	ch DIN EN 12457-4	•		•	•	
Ammonium	AN/f	LG004	DIN ISO 15923-1	0,06	mg/l	-	-	< 0,06
Elemente aus dem 10:1-Sch	üttele	luat na	ich DIN EN 12457-4		-			
Antimon (Sb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,0003	mg/l	-	-	< 0,0003
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	0,0002	mg/l	-	-	< 0,0002
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	< 0,005
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,0002	mg/l	-	-	< 0,0002
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-	< 0,005
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	0,01	mg/l	-	-	< 0,01
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-	< 0,001

				Probenbeze	ichnung	RKS 6/2 (1,0	RKS 7/4 (2,8	8 RKS 8/4 (3,4
						m - 2,0 m)	m - 3,8 m)	m - 4,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	20.10.2016	20.10.2016
				Probennum	mer	316108036	316108037	316108040
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
PFT aus dem 10:1-Schüttele	luat n	ach DI	N EN 12457-4	•		•		
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	-	1
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	-	-
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,038	-	-
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,0380	-	-
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	-	-
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,0380	-	-
PFT aus dem 2:1-Säulenelua	at nac	h DIN	19528	•		•		
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,029	< 0,010	< 0,010
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,16	< 0,010	< 0,010
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,189	(n. b.) 1)	(n. b.) 1)
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010	< 0,010
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,189	(n. b.) 1)	(n. b.) 1)

				Probenbezei	ichnung	RKS 6/2 (1,0 m - 2,0 m)	m - 3,8 m)	m - 4,4 m)
				Probenahme	edatum/ -zeit	20.10.2016	20.10.2016	20.10.2016
				Probennum	mer	316108036	316108037	316108040
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
Sonstige Parameter		-						
Arsen	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/l	5,8	-	-
Blei	AN/f	LG004	DIN EN ISO 17294-2	2	mg/l	17,5	-	-
Cadmium	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/l	< 0,2	-	-
Chrom	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	4	-	-
Cobalt	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	19	-	-
Kupfer	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	7	-	-
Nickel	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	5	-	-
Quecksilber	AN/f	LG004	DIN EN ISO 12846	0,007	mg/l	< 0,07	-	-
Selen	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	< 1	-	-
Zink	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	14	-	-
Zinn	AN/f	LG004	DIN EN ISO 17294-2	3	mg/l	< 3	-	-
Antimon	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	11	-	-

				Probenbeze	ichnung	RKS 9/1 (0,2 m - 0,4 m)	RKS 10/5 (3,7 m - 4,7 m)
				Probenahme	edatum/ -zeit	19.10.2016	20.10.2016
				Probennum		316108042	316108043
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
Probenvorbereitung Feststo	ffe						
Fraktion > 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	50,9	4,8
Fraktion < 2 mm	AN/f	LG004	DIN ISO 11464	0,1	%	49,1	95,2
Physikalisch-chemische Ke	nngrö	ßen au	ıs der Originalsubs	tanz			
Trockenmasse	AN/u	LG004	DIN EN 14346	0,1	Ma%	94,4	97,0
Elemente aus dem Königsw	asser	aufsch	luss nach DIN EN	13657	1		
Antimon (Sb)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	< 1	-
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/kg TS	4,2	-
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	2	mg/kg TS	7	-
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/kg TS	< 0,2	-
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	6	-
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	82	-
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	5	-
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	6	-
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,07	mg/kg TS	< 0,07	-
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	< 1	-
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	5	mg/kg TS	-	-
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	1	mg/kg TS	35	-
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	3	mg/kg TS	< 3	-
Organische Summenparame	eter au	ıs der	Originalsubstanz				
Kohlenwasserstoffe C10-C22		LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40
Kohlenwasserstoffe C10-C40	AN/f	LG004	DIN EN 14039	40	mg/kg TS	< 40	< 40
PAK aus der Originalsubsta	nz (Fr	aktion	< 2 mm)		Į.		
Naphthalin	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Acenaphthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Fluoren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Phenanthren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Chrysen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[b]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[k]fluoranthen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[a]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Indeno[1,2,3-cd]pyren	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Dibenzo[a,h]anthracen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Benzo[ghi]perylen	AN/f	LG004	DIN ISO 18287	0,05	mg/kg TS	< 0,05	< 0,05
Summe 16 EPA-PAK exkl.BG	AN/f	LG004	DIN ISO 18287		mg/kg TS	(n. b.) 1)	(n. b.) 1)

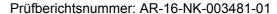
				Probenbeze	ichnung	RKS 9/1 (0,2 m - 0,4 m)	RKS 10/5 (3,7 m - 4,7 m)
				Probenahme	edatum/ -zeit	19.10.2016	20.10.2016
				Probennum	mer	316108042	316108043
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
PCB aus der Originalsubsta	nz (Fr	aktion	< 2 mm)		•		
PCB 28	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
PCB 52	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
PCB 101	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
PCB 153	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
PCB 138	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
PCB 180	AN/f	LG004	DIN 38414-S20/DIN ISO 10382	0,01	mg/kg TS	< 0,01	-
Summe 6 DIN-PCB exkl. BG	AN/f	LG004	DIN 38414-S20/DIN ISO 10382		mg/kg TS	(n. b.) 1)	-
Physikalisch-chemische Ke	nngrö	ßen au	ıs dem 10:1-Schütte	eleluat nach I	DIN EN 12457	-4	
pH-Wert	AN/f	LG004	DIN 38404-C5			-	-
Leitfähigkeit bei 25°C	AN/f	LG004	DIN EN 27888	5	μS/cm	-	-
Anionen aus dem 10:1-Schi	ittelelı	uat nac	ch DIN EN 12457-4				
Sulfat	AN/f	LG004	DIN EN ISO 10304-1	1,0	mg/l	-	-
Kationen aus dem 10:1-Sch	üttelel	uat na	ch DIN EN 12457-4				
Ammonium	AN/f	LG004	DIN ISO 15923-1	0,06	mg/l	-	-
Elemente aus dem 10:1-Sch	üttele	luat na	nch DIN EN 12457-4				
Antimon (Sb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Arsen (As)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Blei (Pb)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Cadmium (Cd)	AN/f	LG004	DIN EN ISO 17294-2	0,0003	mg/l	-	-
Chrom (Cr)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Cobalt (Co)	AN/f	LG004	DIN EN ISO 17294-2	0,0002	mg/l	-	-
Kupfer (Cu)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-
Nickel (Ni)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Quecksilber (Hg)	AN/f	LG004	DIN EN ISO 12846	0,0002	mg/l	-	-
Selen (Se)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-
Silber (Ag)	AN/f	LG004	DIN EN ISO 17294-2	0,005	mg/l	-	-
Zink (Zn)	AN/f	LG004	DIN EN ISO 17294-2	0,01	mg/l	-	-
Zinn (Sn)	AN/f	LG004	DIN EN ISO 17294-2	0,001	mg/l	-	-

				Probenbezei	chnung	RKS 9/1 (0,2 m - 0,4 m)	RKS 10/5 (3,7 m - 4,7 m)
				Probenahme	datum/ -zeit	19.10.2016	20.10.2016
				Probennummer		316108042	316108043
Parameter	Lab.	Akkr.	Methode	BG	Einheit		
PFT aus dem 10:1-Schüttele	luat n	ach DI	N EN 12457-4				
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	-	-
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	-	-
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	-	-
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	-	-
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	-	-
PFT aus dem 2:1-Säulenelua	at nacl	n DIN	19528	•			
Perfluorbutansäure (PFBA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluorbutansulfonsäure (PFBS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015
Perfluorpentansäure (PFPeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluorhexansäure (PFHxA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluorhexansulfonsäure (PFHxS)	AN/f	LG004	DIN 38407-F42	0,015	μg/l	< 0,015	< 0,015
Perfluorheptansäure (PFHpA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluoroctansäure (PFOA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluoroctansulfonsäure (PFOS)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	0,10	< 0,010
Summe PFOS / PFOA exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,100	(n. b.) 1)
Perfluornonansäure (PFNA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Perfluordecansäure (PFDeA)	AN/f	LG004	DIN 38407-F42	0,010	μg/l	< 0,010	< 0,010
Summe PFT Komponenten exkl. BG	AN/f	LG004	DIN 38407-F42		μg/l	0,100	(n. b.) 1)

					edatum/ -zeit	RKS 9/1 (0,2 m - 0,4 m) 19.10.2016	RKS 10/5 (3,7 m - 4,7 m) 20.10.2016
Parameter	1 -1-	Alden	Methode	Probennum		316108042	316108043
	Lab.	AKKr.	Methode	BG	Einheit		
Sonstige Parameter							
Arsen	AN/f	LG004	DIN EN ISO 17294-2	0,8	mg/l	-	-
Blei	AN/f	LG004	DIN EN ISO 17294-2	2	mg/l	-	-
Cadmium	AN/f	LG004	DIN EN ISO 17294-2	0,2	mg/l	-	-
Chrom	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Cobalt	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Kupfer	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Nickel	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Quecksilber	AN/f	LG004	DIN EN ISO 12846	0,007	mg/l	-	-
Selen	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Zink	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-
Zinn	AN/f	LG004	DIN EN ISO 17294-2	3	mg/l	-	-
Antimon	AN/f	LG004	DIN EN ISO 17294-2	1	mg/l	-	-

Erläuterungen

BG: Bestimmungsgrenze


Lab.: Kürzel des durchführenden Labors Akkr.: Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

- /u: Die Analyse des Parameters erfolgte in Untervergabe.
- /f: Die Analyse des Parameters erfolgte in Fremdvergabe.

¹⁾ nicht berechenbar

Seite 1 von 4

Eurofins Umwelt Nord GmbH - Demmlerstraße 9 - 19053 - Schwerin

Dipl.-Ing. Oliver Kowalski c/o Bürogemeinschaft Kowalski - Dr. Preuß Lise-Meitner-Weg 32a 23562 Lübeck

Titel: Prüfbericht zu Auftrag 31629897

Prüfberichtsnummer: AR-16-NK-003481-01

Auftragsbezeichnung: K 1607 Norderstedt / Stonsdorf

Anzahl Proben: 8

Probenart: Bodenluft

Probenahmedatum: 19.10.2016, 20.10.2016

Probenehmer: Auftraggeber Probeneingangsdatum: 24.10.2016

Prüfzeitraum: 24.10.2016 - 28.10.2016

Kommentar: K 1607 Orientierende Altlastenerkundung Norderstedt / Stonsdorf

Hier: Untersuchung von Bodenluftproben

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS UMWELT.

Es gelten die Allgemeinen Verkaufsbedingungen (AVB), sofern nicht andere Regelungen vereinbart sind. Die aktuellen AVB können Sie jederzeit unter http://www.eurofins.de/umwelt/avb.aspx einsehen.

Dr. Konstanze Kiersch

Niederlassungsleitung

Tel. +49 385 5727550

Digital signiert, 28.10.2016

Dr. Konstanze Kiersch

Niederlassungsleitung

Amtsgericht Oldenburg HRB 141387

USt.-ID.Nr. DE 228 91 2525

						İ		
				Probenbezei		RKS 1 / BL	RKS 2 / BL	RKS 3 / BL
				Probenahme	edatum/ -zeit	19.10.2016	19.10.2016	19.10.2016
				Anreicherun	gsvolumen	5	5	5
				[1]				
				Probennumr	ner	316107968	316107969	316107970
Parameter	Lab.	Akkr.	Methode	BG	Einheit			
BTEX und aromatische Koh	lenwa	sserst	offe aus der Akt	ivkohle-Anreiche	erung			
Benzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,013	0,010	< 0,010
Toluol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,21	0,069	0,073
Ethylbenzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,047	0,015	0,014
m-/-p-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,13	0,035	0,037
o-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,033	< 0,010	< 0,010
Summe BTEX	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	0,433	0,129	0,124
LHKW aus der Aktivkohle-A	nreich	nerung		•				
Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Dichlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
trans-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
cis-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Chloroform (Trichlormethan)	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
1,1,1-Trichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
Tetrachlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
Trichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
Tetrachlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
1,1-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
1,2-Dichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Summe LHKW (10 Parameter)	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	(n. b.) 1)	(n. b.) 1)	(n. b.) ¹⁾
Summe LHKW (10) + Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	(n. b.) 1)	(n. b.) 1)	(n. b.) 1)

				Probenbezei	chnung	RKS 4 / BL	RKS 5 / BL	RKS 6 / BL
					datum/ -zeit		19.10.2016	20.10.2016
				Anreicherun	gsvolumen	5	5	5
				[1]		316107971	316107972	040407070
			la	Probennum		31610/9/1	31610/9/2	316107973
Parameter	Lab.		Methode	BG	Einheit			
BTEX und aromatische Koh								
Benzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,011	0,010	0,011
Toluol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,064	0,11	0,11
Ethylbenzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,014	0,023	0,024
m-/-p-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,044	0,067	0,071
o-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,011	0,017	0,017
Summe BTEX	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	0,144	0,227	0,233
LHKW aus der Aktivkohle-A	nreich	erung		1		1		
Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Dichlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
trans-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
cis-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Chloroform (Trichlormethan)	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
1,1,1-Trichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
Tetrachlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	< 0,010
Trichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010	0,020
Tetrachlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,036	< 0,010	0,19
1,1-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
1,2-Dichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050	< 0,050
Summe LHKW (10 Parameter)	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	0,04	(n. b.) 1)	0,21
Summe LHKW (10) + Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	0,04	(n. b.) 1)	0,21

				Probenbeze	ichnung	RKS 7 / BL	RKS 8 / BL
				Probenahme	edatum/ -zeit	20.10.2016	20.10.2016
				Anreicherun	igsvolumen	5	5
				Probennum	mer	316107974	316107975
Parameter	Lab.	Akkr.	Methode	BG	BG Einheit		
BTEX und aromatische Koh	ilenwa	sserst	offe aus der Akti	vkohle-Anreich	erung		
Benzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	-
Toluol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,051	-
Ethylbenzol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	-
m-/-p-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	0,015	-
o-Xylol	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	-
Summe BTEX	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	0,066	-
LHKW aus der Aktivkohle-A	nreich	erung			1	1	1
Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
Dichlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
trans-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
cis-1,2-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
Chloroform (Trichlormethan)	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010
1,1,1-Trichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010
Tetrachlormethan	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010
Trichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010
Tetrachlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,0050	mg/m³	< 0,010	< 0,010
1,1-Dichlorethen	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
1,2-Dichlorethan	AN/f	LG004	VDI 3865 Blatt 3	0,020	mg/m³	< 0,050	< 0,050
Summe LHKW (10 Parameter)	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	(n. b.) ¹⁾	(n. b.) 1)
Summe LHKW (10) + Vinylchlorid	AN/f	LG004	VDI 3865 Blatt 3		mg/m³	(n. b.) ¹⁾	(n. b.) 1)

Erläuterungen

BG: Bestimmungsgrenze

Lab.: Kürzel des durchführenden Labors Akkr.: Akkreditierungskürzel des Prüflabors

Kommentare zu Ergebnissen

Die mit AN gekennzeichneten Parameter wurden von Eurofins Umwelt West GmbH (Wesseling) analysiert. Die mit LG004 gekennzeichneten Parameter sind nach DIN EN ISO/IEC 17025:2005 D-PL-14078-01-00 akkreditiert.

/f: Die Analyse des Parameters erfolgte in Fremdvergabe.

¹⁾ nicht berechenbar

Fotodokumentation Norderstedt, Stormarnstr. 34-36

19.10.2016

Foto 1: RKS 9

Foto 2: RKS 1

Foto 3: RKS 2

Foto 4: RKS 7

Foto 5: KVF2, RKS 8

Foto 6: KVF2, Chemikalientank-Domschacht

Fotodokumentation Norderstedt, Stormarnstr. 34-36

19.10.2016

Foto 7: KVF4, RKS 10

Foto 9: Halle KRS 4

Foto 10: Halle, RKS 5

Foto 11: Halle, RKS 6

Foto 12: Eingang Kaufhaus Hempels

